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PREFACE

Students are required to perform error analyses of re-
sults obtained from experiments in engineering laboratory
courses. Laboratory manuals and standard texts on engi-
neering experimentation usually contain a chapter or two
on error analysis: also, students have had prior experi-
ence in lower division physics and chemistry laboratory
courses. In addition, laboratory instructors are available to
answer questions concerning errors in a particular exper-
iment. Notwithstanding, when asked, nearly all students
will say that they have more difficulty with error analyses
than any other aspect of experimental procedures and re-
porting, and at the end of the course they feel that they
have learned little about error analysis. I(AFM) have been
an instructor in engineering laboratory courses for more
than forty years, and must share the blame for this sorry
state of affairs. But, better late than never, so we have un-
dertaken the preparation of this manual on error analysis
for engineering students. Because of our background, the
examples and case studies presented are from the fields
of heat transfer and fluid mechanics: however, the prin-
ciples and methodology advocated have broad application
to most aspects of engineering experimentation.

What are possible reasons for the difficulties reported
by students? We can suggest three, as follows.

1. Texts on engineering experimentation emphasize
statistical methods for error analysis. The only
proper use for statistical methods is for the analysis
of precision (random) errors: however, in most ex-
periments performed by students, precision errors
are insignificant due to the use of modern electronic
instrumentation, data acquisition systems, and com-
puters to control and process data. When there are
significant precision errors, it is usually quite obvi-
ous that these errors can be reduced with an invest-
ment of more time and/or more funds for better in-
strumentation. To support our argument we note
that standard texts often use examples from pro-
duction technology to illustrate statistical concepts:
why are real experimental data not used? Also, in the
case studies that are presented, the precision error
is very often negligible, as we claim is the rule. Of
course, statistical analysis does yield results of con-
sequence to the experimentor—but often texts fail to
properly recognize the most important results, for
example, the uncertainty of a sample mean and the
corresponding concept for curve fits. In this man-
ual we will introduce statistical analysis of precision
errors, with an emphasis on the really pertinent re-
sults.

2. Texts do not present much material on bias errors:
some sources are listed and one or two quantitative
examples given. The most common example given
is bias error in an instrument, which is seldom a real
problem: if the bias error is significant and known,
it should be incorporated in the data processing; if
it is possibly significant and unknown, a different in-

strument should be used. The bias errors that cause
students headaches are of the conceptual type. Is
the sensor measuring the correct quantity? Or are
the models used to explain the experimental results
faithful to the real situation? The beginning student
has little experience in these matters and needs to
be educated. The problem is compounded by the
turnover of instructors in laboratory courses. Ex-
periments are, by their nature, challenging and often
new instructors do not spend significant time mas-
tering an experiment before attempting to teach stu-
dents. An all too frequent complaint from students
is that an experiment “didn’t work.” What this usu-
ally means is the instructor did not take the time to
understand the bias errors present and take steps
to eliminate the causes or develop appropriate cor-
rection procedures. Students need to see many case
studies that show how bias errors were identified,
and either corrected for or eliminated. Such stud-
ies should give the student ideas on how to proceed
when faced with new situations.

3. Lastly, there is the recent practice of presenting
rules for combining precision and bias uncertain-
ties, based on procedures that are now de riguer for
publication of papers in research journals, and that
have been adopted by standards organizations. As
most workers familiar with error analysis are aware,
these rules have no scientific basis. No real attempt
is made to explain this peculiar situation to the stu-
dent, which is unfortunate. But, at the risk of being
branded as heretics, we will go further and claim that
there is seldom even a good pragmatic reason for
the use of these rules. Indeed, the examples of their
use given in standard texts invariably only demon-
strate the folly of attempting their use. If advocates
of these rules protest, let them try to explain to a
bright student how to estimate a bias error at 95%
coverage. Once upon a time there was perhaps a
pragmatic justification for treating bias errors sta-
tistically so that the dominant precision error could
be “corrected” for a smaller bias error. But if preci-
sion errors are small and the major concern is bias
errors, is not this procedure a case of the tail wag-
ging the dog? In this manual we will make the case
that evaluation and intelligent discussion of possi-
ble bias errors are of more value than rules based on
invalid premises.

It should now be clear to the reader that this manual
will advocate some departures from current practice that
will not be kindly received by some. But we hope the po-
tential critic will keep in mind our major objective, which
is to introduce students to error analysis in the context
of experiments that are typical of laboratory courses and
routine research. In so doing we hope the students will de-
velop a good understanding of error analysis so that they
can later appreciate the special needs of more complex ex-
perimental procedures. In addition, we hope that they will
develop sufficient confidence to report their error analy-
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ses in a meaningful manner, rather than simply following
some rules that may not be appropriate to the particular
situation.

1 Introduction

This manual presents the more elementary aspects of er-
ror analysis of experiments that students in undergradu-
ate engineering laboratory courses should be able to mas-
ter. Throughout are many examples based on real exper-
iments that should satisfactorily illustrate the theory and
procedures. Section 2 defines types of errors with the im-
portant distinction between precision (random) and bias
(systematic) errors. Section 3 introduces concepts associ-
ated with a sample, such as the mean and standard devi-
ation, and Section 4 introduces least-squares curve-fitting
of data. Section 5 carefully defines how experimental un-
certainty should be reported. Sections 6 and 7 deal with
propagation of errors from measurements to final results,
first for bias errors and then for precision errors. Section
8 discusses the use and misuse of error bars and related
concepts. Sections 9, 10 and 11 go more deeply into the
statistical theory used to handle precision errors. Section
9 presents features of the normal (Gaussian) probability
distribution, while Sections 10 and 11 deal, respectively,
with samples and curve-fitting data from parent normal
populations. Section 12 briefly discusses the role of sta-
tistical inference in engineering experiments. Section 13
deals with the controversial topic of whether and how to
combine precision and bias errors. Section 14 discusses
sampling of time dependent data. The manual closes with
a selection of case studies in Section 15, which reports in
detail the development of a variety of experiments.

2 Types of Errors

Physical quantities measured in experiments, e.g., velocity,
temperature, concentration, heat or neutron fluxes, etc.,
are subject to error. It is the custom to classify errors into
two broad categories, (i) precision errors, and (ii) bias er-
rors.

Precision Errors. Precision errors, also called random er-
rors due to their nature, can have various sources. They are
often associated with the “least count” of the scale on an
analog instrument. For example, if a manometer has grad-
uations at intervals of 1 mm (a least count of 1 mm), we
can expect precision errors of about 1 mm in readings of
the manometer due to the way we eye the scale. Precision
errors also arise in analog to digital conversions of signals.
For example, an 8-bit A/D converter can record 256 voltage
levels: if it is to have a range of 10V, precision errors of
about 10/256 = 0.04V can be expected. Precision errors
associated with an instrument are also called repeatabil-
ity errors. Precision errors often result from fluctuating
experimental conditions. Flow of water through a pipe
system can be very steady with negligible fluctuations in

flow rate; on the other hand, when an automobile engine
is tested on a dynamometer, there can be significant fluc-
tuations in the measured r.p.m. and torque.

Precision errors cause scatter in experimental data.
They are amenable to statistical analysis and the theory
of statistics has many powerful and useful results that fa-
cilitate a satisfactory treatment of precision errors.

Bias Errors. Bias errors, also called systematic errors,
have many sources. The source most often mentioned in
texts is a calibration error in a measuring instrument. Cali-
bration errors may be a zero-offset error that causes a con-
stant absolute error in all readings, or a scale error in the
slope of output versus input that causes a constant per-
centage error in all readings. Scale errors are also called
sensitivity or span errors. Some instruments have a bias
error associated with hysteresis, that is, the output differs
depending on whether the input is increasing or decreas-
ing. Also, there can be a bias error due to local nonlin-
earity in the instrument response. Figure 1 illustrates cal-
ibration errors. Often a measurement technique is chosen
even though it is known to have a significant bias error. A
correction is then made to eliminate this bias error on the
assumption that secondary bias errors associated with the
correction calculation are much smaller than the primary
bias error. An example is the use of an unshielded thermo-
couple to measure the temperature of a hot gas flow where
the thermocouple temperature is lower than the gas tem-
perature due to radiation heat losses to the cooler duct wall
(see Example 4). To make a correction the thermocouple
emittance and convective heat transfer coefficient must be
known, and both of these quantities have some degree of
uncertainty. Similarly, Example 2.6 of BHMT [1] shows how
bias errors in thermocouple measurements that occur due
to conduction along the leads can be corrected.

Unfortunately, there are frequently “hidden” bias er-
rors in an experiment, that is, significant bias errors that
the experimentor is unaware of. The situation is usually
one where the quantity being measured is not what the ex-
perimentor thinks it is, and for this reason such errors are
often called conceptual errors. For example, a temperature
sensor attached to a surface will not read the surface tem-
perature unless there is a good thermal contact between
the sensor and surface; if not, the sensor will give a value
somewhere between the true surface temperature and the
ambient temperature. Even when aware of a possible prob-
lem the experimentor may choose not to correct the sensor
temperature because it would be a difficult calculation to
make. The literature of science and engineering has nu-
merous examples of experimental results that are practi-
cally worthless because the experimentors were unaware
of, or did not correct for, gross bias errors. It is imperative
for an experimentor to attempt quantitative estimates of
all suspected bias errors and determine the effect of such
errors on the desired results. Often a significant bias error
in a particular measurement can have a negligible impact
on the desired result, and hence can be ignored. For exam-
ple, if the radiation heat loss from a very hot object to cold
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surroundings is to be determined (see Eq. 1.18 of BHMT),
the surroundings temperature need not be accurately mea-
sured since the precise value has little effect on the heat
loss: it is the temperature of the hot object and its emit-
tance that must be accurately known.
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Figure 1 Instrument errors: (a) zero-offset, (b) sensitivity, (c)
hysteresis, (d) nonlinearity, (e) repeatibility.

Hidden bias errors are seldom encountered in fre-
quently used test facilities using well established tech-
niques. Examples include the use of sophisticated testing
machines to measure the ultimate tensile strength of metal
samples, or a wind-tunnel facility for measuring lift and
drag on aerofoils. After many years of use and develop-
ment, such facilities seldom give unreliable results. Prob-
lems arise when new, one-off, test rigs are designed and
built. For example, there has been recently many studies
of friction and heat transfer for fluid flow in microchannels
to support emerging MEMS technologies. Adapting exper-
imental techniques used successfully for macroscale com-
ponents to microscale components introduces unforeseen
problems and hidden bias errors in measurements. In such
situations the experimentor must make a thorough numer-
ical evaluation of all possible bias errors, initially when the
test rig is designed, and later when test data are available.
On the other hand, in most engineering experimentation
the precision of data is of secondary concern. If more pre-
cise data are required, they usually can be obtained by in-
vesting more man-hours and more funds to purchase bet-
ter equipment and instrumentation. Precision errors can
be a nuisance, a gross bias error can be a catastrophe!

Often a comparison is made between theoretical and
experimental results. When there are discrepancies be-
tween these results, the beginning student tends to believe
that the experimental results are somehow less reliable.
The student refers to errors in the experimental results
when preparing a report. Of course, theoretical results do
not have significant precision errors (round-off errors in
numerical computations should be orders of magnitude
less than precision errors in experimental data); thus, pre-
cision errors are only associated with the experimental re-
sults. Likewise, bias errors associated with sensors and
instruments are also associated only with the experimen-
tal results. However, most often the largest discrepancies
are due to the fact that the physical system does not ex-
actly match the theoretical model, or conversely, the theo-
retical model does not exactly match the physical system.
For example, when we test an automobile engine and com-
pare the measured efficiency with the Otto-cycle efficiency
of thermodynamics theory, the discrepancy is an error in
the theoretical model: the test engine is reality. On the
other hand, if we use theory to predict heat transfer rates
for fluid flow through microchannels in an IC chip cooling
system, the discrepancies between theoretical and experi-
mental results could well be due to difficulties in making
measurements on such a small scale. Then the discrepan-
cies are appropriately viewed as errors in the experimen-
tal results. The student should always be careful to ascer-
tain whether discrepancies between theory and experiment
should be considered as errors in the theory, errors in the
experiment, or perhaps in both.

Accuracy. Often instrument manufacturers quote an “ac-
curacy” for their instrument, for example ±0.5%. Of
course, a maximum error of ±0.5% is implied (the instru-
ment is 99.5% accurate). The concept of accuracy is used
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rather loosely, but usually can be taken to include errors
from all sources such as bias errors associated with scale
nonlinearity, and precision errors associated with repeata-
bility of values. In essence the manufacturer is prepared
to guarantee that a measurement will never have a total
error greater than 0.5%.

Some important rules. Having defined the various types
of errors encountered in experiments, it is now possible
to introduce some rules, or guiding principles, for error
analysis of engineering experiments.

Rule 1: As soon as an error from a particular source is
seen to be significantly smaller than other errors
present, it is given no further consideration.

Rule 2: The major concern of most error analyses is the
quantitative estimate of bias errors, and correction
of data accordingly when possible.

Rule 3: Whenever feasible, precision errors should be esti-
mated from repeated tests or from observed scatter
in graphed results.

Rule 4: In planning an experiment where it appears that
significant bias errors will be present, an effort
should be made to ensure that precision errors are
much smaller.

The significance of these rules will become clear as we
proceed through this manual. They are presented here so
that the student can more clearly understand the motiva-
tion behind the material and examples that follow.

Example 1. Measurement of Air Temperature and
Relative Humidity

The moisture content of ambient air has a critical effect
on the manufacturing processes of various silicon based
products, such as chip wafers and optical fibers. Thus,
the air condition in experimental and production facilities
needs to be measured and tightly controlled. A measure-
ment unit that is used in production facilities is the Vi-
asala HMP 233 Humidity/Dewpoint Transmitter. It uses a
platinum RTD to measure temperature, and the humidity
sensor uses the effect of moisture on the dielectric proper-
ties of a solid polymer to measure relative humidity. The
following specifications are given by the manufacturer:

Relative Humidity
Measurement range 0–100%
Accuracy ±1% RH, 0–90% RH
(including nonlinearity ±2% RH, 90–100% RH
and repeatability)

Temperature
Measurement range −40 °C to +80 °C
Accuracy at 20 °C ±0.2 °C

The output on the computer screen is simply two
columns of figures giving temperature and relative humid-
ity at intervals of 1 second (1 Hz frequency). For example,
a measurement of the laboratory ambient air gives:

T (°C) RH (%) T (°C) RH (%)

21.8 50.5 21.8 50.5

21.8 50.5 21.7 50.5

21.8 50.5 21.8 50.6

21.8 50.5 21.8 50.6

21.8 50.5 21.8 50.5

21.8 50.5 21.8 50.5

21.8 50.5 21.8 50.5

What does these data tell us? Clearly, the precision errors
are very small, less than 0.1% RH and 0.1 °C. The claimed
accuracy of the RH measurement accounting for both bias
and precision errors is ±1.0%. Clearly, the 0.1% observed
possible precision errors are negligible compared to the
1.0% (the values of 50.6% could be due to precision er-
ror or due to a fluctuation in the ambient air condition).
The claimed accuracy of the temperature measurement is
±0.2 °C. The 0.1 °C observed possible precision error is one-
half this value: if an additional figure were displayed the
possible precision error may even be smaller. Clearly the
manufacturer expects a bias error approaching ±0.2 °C. In-
deed, the common wisdom is that one does not claim a
total error less than 0.2 °C for any temperature sensor un-
less a very special effort is made to calibrate the sensor
and process the output.

We conclude that the precision error in these measure-
ments will be negligible for usual experimental practice.

Example 2. A Turbine Flowmeter

Turbine flowmeters are popular because of their accuracy
and convenient output. Similar to the familiar anemome-
ter used by weather stations to measure wind speed, the
rotor rotational speed, proportional to flow rate, is sensed
by a reluctance-type pick-up coil to give a voltage pulse rate
that can be sensed by a frequency meter. The frequency
can be converted to flow rate using a calibration constant
for the meter, and shown on a digital display. Using the
manufacturer supplied calibration constant, and accuracy
of 0.5% or 1.0% may be claimed for a flow range down to
1/10 of the maximum flow rate. At lower flow rates the
response becomes increasing nonlinear. If the standard
accuracy is not sufficient, the manufacturer will supply a
calibration, and perhaps specify a 0.25% accuracy. A sam-
ple calibration is shown in Table 1.

We see that the deviation has a maximum of 0.2% and
only occurs for two of the ten tests. The manufacturer
claims that the “true” flow is within ±0.15% of NIST flow
standards. Due to its regular variation with flow rate we
suspect that the calibration error is a bias error, and we
really do not know whether the ±0.15% is a bias or pre-
cision error, or both. These errors are small and we are
not likely to ever know their true nature. The manufac-
turer also claims a repeatability of ±0.02% of the reading:
clearly this precision error is of no consequence since it is
an order of magnitude less than the significant figures of
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the data used in the calibration. We can certainly accept
the manufacturer’s claim that use of a constant K factor
of 2715 will ensure an error no greater than 0.5%. On the
other hand, use of the calibration table will not necessarily
ensure an error less than 0.25% because of the additional
0.15% uncertainty in the “true” flow.

Table 1 Calibration of a turbine flow meter.

.

True Flow Frequency K-factor Deviationa

gpm Hz Hz/gpm× 60 %

27.94 1262.2 2710.8 −0.1

19.90 899.6 2713.0 0

19.90 899.51 2712.6 −0.1

14.91 673.7 2711.8 −0.1

10.067 454.6 2709.4 −0.2

7.484 338.35 2712.6 −0.1

5.464 247.74 2720.4 0.2

3.508 158.87 2717.3 0.1

3.505 158.76 2717.8 0.1

2.309 104.47 2714.7 0.0

aThe deviations are from an average K factor of
2717.04.

Comments:

1. Errors of less than 0.5% in a flow rate are usually of
no consequence in a fluid flow or heat transfer exper-
iment. Thus, for practical purposes, we can assert
that there is negligible error in the flow rate mea-
surement and not concern ourselves further.

2. When used in test rig there may be flow fluctuations
large enough to give a significant random variation in
the flow rate. In a steady state experiment, a sample
of measurements over a chosen time period should
be taken and averaged: such a process should elimi-
nate any concern of a precision error due to this ran-
dom fluctuation. In a time dependent experiment the
flow rate data can be smoothed using a least squares
technique (similar to curve fitting as described in Sec-
tion 5).

Example 3. Flow Rate Measurement using a Labo-
ratory Burette.

A simple laboratory burette is used to measure condensate
flow rate in a condensation experiment. Just prior to mak-
ing a measurement the valve is closed, and subsequently
the time required for the meniscus to pass from the 0 ml
to the 10 ml graduation, say τ s. The condensate flow rate
is then calculated as 10/τ ml/s. But this value is too high
because the liquid film on the burette inside wall reduces
the volume being filled below 10 ml. Let us estimate the

resulting bias error for water at 300K and a measured flow
rate of 3.1 ml/s. The burette inside diameter is 12.00 mm.

The water is seen to wet the wall well to give a film on
wall. To estimate the error the liquid film is assumed to
be in laminar flow and uniformly distributed around the
circumference. Then the film thickness δ is related to the
mass flow per unit width of film Γ as

δ =
[

3ν�Γ
ρ�g

]1/3

which can be derived from Eq. (7.5) of BHMT for ρv << ρ�.

Γ =
[
(3.1× 10−6m3/s)(996 kg/m3)

(π)(12× 10−3m)

]

= 8.19× 10−2 kg/m s

δ =
[
(3)(0.87× 10−6 m2/s)(8.19× 10−2 kg/m s)

(996 kg/m3)(9.81 m/s2)

]1/3

= 2.8× 10−4 m(0.28 mm).

The volume fraction occupied by the film is

πDδL
(πD2/4)L

= 4δ
D
= 4(0.28)

12
= 0.093(9.3%).

Thus, the bias error in the flow rate is about +10% and
should be corrected for.

Comments: Once we have corrected for a bias uncer-
tainty in our data processing, it is no longer an uncertainty.
However, we may have introduced secondary bias errors
due to uncertainty in our calculation procedure. For exam-
ple, at higher flow rates Eq. (7.5) becomes inaccurate due
to waves appearing on the surface of the film. We always
try to ensure that these secondary errors are negligible.

Example 4. Temperature of a Hot Air Flow.

A thermocouple is used to measure the temperature of a
hot air flow in the center of a large duct. The thermocouple
reads 255 °C when the duct walls are at 100 °C. The emit-
tance of the thermocouple is estimated as 0.85, and the
calculated convection heat transfer coefficient between the
thermocouple and air flow is calculated to be 110W/m2K.
We wish to estimate the true temperature of the air and
the associated bias error in the thermocouple reading.

The thermocouple must be at a lower temperature than
the air in order for the radiation heat lost to the duct walls
to be balanced by convective heat gain from the air. Since
the duct is large we will neglect conduction along the ther-
mocouple leads to the duct wall. An energy balance on the
thermocouple junction requires that

εσAtc
(
T 4
tc − T 4

w

)
= hcAtc (Te − Ttc)

where Ttc , Tw and Te are the thermocouple, duct wall and
air temperatures, respectively. A small gray body in large,
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Table 2 Manufacturer specified errors for a pressure transducer.

Full Scale Linearity and Temperature effect one

Pressure Span Hysteresis Full Scale Span Total

kPa kpa % kpa % kpa % kpa %

200, Typical ±7.5 3.75 0.1 0.05 1 0.5 8.6 4.3±
Maximum ±7.5 3.75 0.5 0.25 2 1 10 5.0±

100, Typical ±3.75 3.75 0.1 .10 0.5 0.5 4.35 4.35±
Maximum ±3.75 3.75 0.5 .50 1 1 5.25 5.25±

50, Typical ±1.88 3.75 0.1 .20 0.25 0.5 2.23 4.46±
Maximum ±1.88 3.75 0.5 1.0 0.5 1.0 2.88 5.76±

20, Typical ±0.75 3.75 0.1 0.5 0.1 0.5 0.95 4.75±
Maximum ±0.75 3.75 0.5 2.5 0.2 1.0 1.45 7.25±

10, Typical ±0.375 3.75 0.1 1.0 0.1 0.05 0.5 0.525±
Maximum ±0.375 3.75 0.5 5.0 0.1 1.0 0.975 9.75±
5, Typical ±1.88 3.75 0.1 2.0 0.025 0.5 0.313 6.26±
Maximum ±1.88 3.75 0.5 10.0 0.05 1.0 0.738 14.8±

nearly black, surroundings has been assumed to calculate
the radiation loss. Substituting,

(0.85)(5.67× 10−8)(5284 − 3734) = (110)(Te − 528).

Solving, Te = 552K (281 °C) and the bias error in the ther-
mocouple measurement is therefore (528− 552) = −26K.

Comments: At the experiment design stage it may be de-
cided that this bias error is too large for an accurate cor-
rection (see Example 11 for the effect of uncertainties in ε
and hc on the error estimate). A simple solution is to use
a radiation shield or multiple radiation shields to reduce
the radiation heat loss to an acceptable level (see BHMT
Exercise 6-22).

Example 5. Accuracy of a Pressure Transducer.

Silicon piezoresistive pressure sensors are widely used.
The Omega PX200-030DV sensor consists of a single mono-
lithic silicon diaphragm with a strain gage and film resistor
network on each chip. The chip is laser trimmed to give a
precise span, offset and temperature calibration. The volt-
age response is linear to high accuracy. Pertinent specifica-
tions are as follows (refer to Figure 1 for error definitions):

Operating temperature: 0 – 85 °C
Differential pressure range: 0 – 200 kPa
Full scale span: 40± 1.5 mV
Zero pressure offset: 0.05 mV typical, 1 mV maximum
Linearity and hysteresis, % full scale: ±0.05 typical, 0.25
maximum

Temperature effect on full scale span, % full scale: 0.5 typ-
ical, 1 maximum
Temperature effect on offset, % full scale: 0.5 typical, 1
maximum

The transducer output is fed to a computer controlled
data acquisition system and the pressure displayed on the
screen and/or used in further calculations. Before each
test the transducer is zeroed by a command to the data
acquisition system. Hence, the specified offset errors are
of no real practical importance. The key issue is the spec-
ified errors in the full-scale span. Notice that no error is
specified in the sensitivity: instead an error of ±1.5 mV
is specified for the full scale span. Let us now examine
the error in pressure measurements over the range 5 to
200 kPa.

The manufacturer does not state whether the specified
errors are precision, bias or combined errors. However, we
will consider a set-up consisting of a data acquisition sys-
tem coupled to a PC. Data are sampled at 5 Hz and averaged
over 2s: new values are displayed as available. Since the
displayed value is a running average of 10 measurements,
the precision error associated with the instrumentation
should be negligible, and the errors stated by the manu-
facturer will be taken as bias errors. Table 2 shows these
errors assuming the nominal sensitivity of 0.2 mV/kPa is
programmed into the data acquisition software.

The summed “maximum” error is the absolute maxi-
mum bias error that could be present and would occur with
an anomalous transducer. The summed “typical” error is
the maximum bias error that could occur with a typical
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transducer. Since the errors can be positive or negative,
the actual net error can be anywhere in the ranges speci-
fied. We cannot be more specific. Notice that at the high
end of the pressure range the full-scale span error is dom-
inant, while at the low end the linearity and hysteresis are
also important. From Table 2 we see that use of the trans-
ducer below 20 kPa usually should not be recommended:
20 kPa is 10% of full scale, and an operating range of 90% of
full scale is quite reasonable. If pressures below 20 kPa are
to be measured, a transducer with a much smaller full scale
span should be used. In the range 20–200 kPa the typical
errors are reasonable (� 5%) considering that this model
transducer is relatively cheap(about $30). A decision to
use the transducer for a particular task will depend on the
needs of the task (see Case Study No. 2 of §15).

3 Data Samples

If we repeat a measurement a number of times we obtain
a sample of values. If the variable being measured is x,
we obtain x1, x2, . . . , xn for a sample of size n. The mean
value of the sample is

x = 1
n

n∑
i=1

xi. (1)

The measured values scatter around the sample mean. The
commonly used measure of the scatter is the standard de-
viation Sx ,

Sx =
⎡⎣ 1
n− 1

n∑
i=1

(xi − x)2
⎤⎦1/2

. (2)

The reason for dividing by (n − 1) rather than n will be-
come apparent later. Figure 2 shows a histogram of the
data: each bar has a height corresponding to the number
of measurements in the intervals of size ∆x. Notice that
the shape of the histogram is similar to the familiar normal
(Gaussian) probability distribution. Indeed, most precision
errors have the characteristic that, as the sample size be-
comes large, the shape of the histogram tends to that of
the normal distribution. This characteristic allows many
powerful methods of statistical analysis to be applied to
the analysis of precision errors. We shall see that by tak-
ing a sample of measurements we can usually find all we
need about the precision errors in a measurement. For ex-
ample, we are almost always more interested in the sample
mean than in individual measurements. If we were to take
a number of samples the resulting mean values are also
normally distributed, and it will be shown that the stan-
dard deviation of the mean can be estimated as

Sx � Sx
n1/2 . (3)

This is a very useful result: it tells us that there is always
less precision error in a sample mean than in the individ-
ual measurements, and if the sample size is large enough
the error can be negligible. (Remember Rule 1: when one
error is much smaller than other errors it can be ignored.)

N
u

m
b

er
 o

f 
R

ea
d

in
g
s

52 54 56 58 60 6250

Transducer Output (mV)

0

2

4

6

8
10

12

14

Figure 2 Histogram of a large data sample.

Whereas statistical analysis of a sample tells us a lot
about precision errors, having a sample tells us nothing
about bias errors. The total error in a measurement is the
difference between the measured value and the true value.
Figure 3 shows the total error in the kth and (k+1)th mea-
surements of the variable x. The total error is the sum of
the fixed bias error and random precision error. If we take
a large enough sample we could say that a good estimate
of the bias error is x−xtrue. But the catch is that we do not
know xtrue a priori : xtrue is the unknown we seek to deter-
mine. Thus, determination of bias errors has nothing to do
with samples of data and statistical analysis. Bias errors
are determined by engineering analysis or by comparisons
with data from alternative instruments, or test rigs that
have been reliably validated.

xk+1xk

x

True
Value

Bias Error

Total Error
in xk
Total Error
in xk+1

Figure 3 Total and bias errors in a measurement.

Example 6. Boiling Heat Transfer Peak Heat Flux.

A laboratory experiment involves quenching a copper
sphere in liquid nitrogen contained in a Dewar flask. The
sphere has a diameter of 1.27 cm and a 30 gage copper–
constantan thermocouple is located at the center of the
sphere. The thermocouple is connected to a signal condi-
tioning unit that transforms the analog signal to a digital
signal, which is then transmitted to a PC. In a particular
experiment temperatures are sampled at 50 Hz and aver-
aged over 0.2 s: the resulting temperature–time response
is displayed and stored by the computer. As the sphere
cools down, the boiling regimes change following the usual
“boiling curve.” See, for example, BHMT Fig. 7.15. Initially
there is film boiling followed by transitional boiling, the
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peak heat flux, nucleate boiling, and finally free convec-
tion. Application of the first law of thermodynamics in
the form of a lumped thermal capacity model (BHMT Sec-
tion 1.5) relates the surface heat flux to the instantaneous
temperature-time derivative.

qA = −ρcV dT
dt
.

After the temperature–time response has been obtained,
the derivative dT/dt is calculated using a central-
difference finite difference approximation: at the nth step,

dT
dt

∣∣∣∣ = Tn+1 − Tn−1

2∆t
.

The heat flux so obtained is used to prepare a boiling curve,
that is, a graph of q versus (T − Tsat). Of particular inter-
est is the peak heat flux, also called the “burn-out” heat
flux since exceeding this flux can cause failure of the heat
transfer surface.

Ten trials of the experiment yielded the values for the
peak heat flux shown in Table 3.

Table 3 Boiling heat transfer peak heat flux.

Trial qmax × 10−5,W/m2

1 1.3063

2 1.3187

3 1.2578

4 1.2873

5 1.3068

6 1.2837

7 1.2724

8 1.2303

9 1.2831

10 1.2964

The mean value of the sample from Eq. (1) is

qmax =
1
n

n∑
i=1

qmax,i = 1.284× 105 W/m2.

From Eqs. (2) and (3) the standard deviations are

Sqmax =
⎡⎣ 1
n− 1

n∑
i=1

(
qmax,i − qmax

)2

⎤⎦1/2

= 2744 W/m2

Sqmax = 2744/101/2 = 868 W/m2.

Comments:

1. Although the physical phenomena involved are com-
plex, the qmax value is surprisingly reproducible. The
standard deviation is only 2.1%

2. Established correlations can be used to estimate a
value of qmax = 1.34 ± 0.06 × 105W/m2. The differ-
ence between the measured and expected results is
less than the uncertainty in the correlation value.

4 Least-Squares Curve Fits

The usual engineering experiment involves two or more
variables. For example, in testing an automobile engine
we may determine how brake horsepower output varies
with air-fuel ratio. Or in a heat transfer experiment we
may determine the convective heat transfer coefficient as
a function of flow velocity. Once having obtained a data
set (xi,yi) = 1,2, . . . , N , where xi and yi may themselves
be sample averages, we find it useful to curve-fit the data.
That is, we put a “best” line through the data, and the equa-
tion of this line is a functional relationship between the
two variables, that is, a correlation of the data in analyti-
cal form. In general, we can attempt to curve-fit the data
with a polynomial of any order, an exponential function,
or whatever we deem appropriate. Most often we attempt
a linear (first order) curve-fit, that is, we fit a straight line
to the data,

y =mx + C. (4)

Let us now restrict our attention to this simple case, and
further assume thaty has significant precision error, while
for x the precision error is negligible.

Our data set will now be written (xi, Yi); i = 1,2, . . . , N
with capital Yi denoting a random variable, as shown in
Fig. 4. Equation 4 becomes

Ŷ =mx + C (5)

where use of the hat on Ŷ recognizes that the values of Y
will generally not fall on the curve-fit.

x

Y

Y = mx + C^

Figure 4 A least squares straight line curve fit of a data set
(xi, Yi).

The “best” line is found by minimizing the sum of the
squares of the deviations between the actual data and val-
ues given by Eq. 5. Since the deviation is Di = Yi − Ŷ , we
seek to minimize∑

D2
i =

∑
(Yi − Ŷi)2 =

∑
(Yi −mxi − C)2 (6)

by choosing appropriate values of m and C . To obtain
these values we differentiate Eq. (6) with respect to m and
C and equate the resulting expressions to zero,

∂
∑
D2
i

∂m
=

∑
xiYi − C

∑
xi −m

∑
x2
i = 0

∂
∑
D2
i

∂C
=

∑
Yi −NC −m

∑
xi = 0.
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Solving for m and C and noting that x = (1/N)
∑
xi,

Y = (1/N)∑Yi
m =

∑
xiYi −NxY∑

x2
i − (

∑
xi)

2 /N
;

C = Y
∑
x2
i − x

∑
xiYi∑

x2
i − (

∑
xi)

2 /N
= Y −mx. (7)

Why should the least squares line be the “best” line
through the data points? A simple justification is that the
sample mean defined by Eq. (1) has the attribute that the
sum of squares of deviations of the sample members from
the mean is a minimum (check!). This idea is then extended
to data correlated by a straight line where Ŷ represents a
“mean” Y value. Analogous to the standard deviation of a
sample Eq. (2) we define a standard error for the curve-fit
as

SY =
[

1
N − 2

∑
D2
i

]1/2
. (8)

Statistics theory shows why the factor (N − 2) is appropri-
ate. (Clearly, for N = 2 there can be no error in a straight
line curve-fit.)

There are a number of issues related to curve-fitting
that the student should be aware of: a brief discussion of
the more important issues follows.

1. We have assumed that all the random error is asso-
ciated with variable y , which was therefore written
Y . If we instead assume that the random error is as-
sociated only with x, that is, we consider a data set
(Xi,y), then a least squares curve-fit will give a dif-
ferent “best” line. But, more generally, both x and
y can have random error, and then more advanced
analysis is required.

2. When a data plot in rectangular coordinates is seen
to be nonlinear, it is sometimes possible to obtain a
linear relation on a semi-log or log–log plot. Often
theory will indicate which plot is more appropriate.
If we expect y = ae−bx , a semi-log plot is appro-
priate, or if we expect y = axn, a log–log plot is
appropriate. If a straight line is subsequently de-
duced, it is then the sum of squares of the deviation
of the logarithm of y that is minimized, not the ac-
tual deviations. A different and more correct result
is obtained by minimizing the actual deviations.

3. One has to choose a form of the functional relation-
ship, e.g., linear, exponential, power law, etc.. Prefer-
ably there is some theoretical basis to the choice (an
underlying model), but sometimes it must be a guess.
A given set of data points can be fitted to more than
one functional form.

4. Sometimes a data point appears incorrect, as shown
in Fig. 5. The cause could be a system malfunction
or human error. Often these outlier data points can
be eliminated by inspection. If there is doubt then
Chauvenent’s principle can be used: this principle is
described in §10.

5. Routines for straight line curve-fitting are found on
most hand-held calculators and spreadsheets. In
addition there are many software products for ad-
vanced curve-fitting tasks. The software is usu-
ally intended for regression analysis as practiced
by statisticians. The difference between regression
analysis and seeking a functional relationship will
be discussed in §11. However, there is no difference
in the least squares curve fitting methodology.

6. Sometimes the precision error depends on the value
of the variable x: then the concept of a standard
error can be too simplistic. The data should be
graphed and checked for such anomalies.

Y

x

Figure 5 An “outlier” data point.

Example 7. Stagnation Line Convective Heat
Transfer.

A laboratory study of convective heat transfer to a cylin-
der in cross-flow was conducted in a small wind tunnel. A
thin film heat flux sensor is bonded to a 35.3 mm diameter
thick wall copper test cylinder, as shown in Fig. 29. The
heat flux sensor has a manufacturer specified calibration
constant of 0.405µV/(Btu/hr ft2). The sensor also contains
a type T thermocouple that is used to obtain the sensor sur-
face temperature. The free-stream air temperature is also
measured by a type T thermocouple. Upstream of the test
section is a 4 to 1 area contraction through which ambi-
ent air enters the tunnel. Pressure taps are located at the
ends of the contraction and the pressure differential used
to determine the air velocity in the working section: an
OMEGA PX-160 series pressure transducer is used for this
purpose. Data acquisition is performed by a Strawberry
Tree connection Mini-16 system, with the data fed to a PC
for further processing and display.

The sensor was located at the forward stagnation line
and tests performed over a range of air speeds. For each
test, the Reynolds and Nusselt numbers are calculated us-
ing

ReD = VD
ν

hc = q
Ts − Tc ;

NuD = hcD
K
.
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Table 4 and Fig. 6 show the experimental results. The
figure is a plot of log NuD versus log ReD .

Table 4 Comparison of experimental and theoretical
stagnation line Nusselt numbers for flow of air across a cylinder

NuD NuD Difference

ReD Experiment Theory %

15025 117.1 120.6 -2.90

17527 127.1 130.2 -2.38

20007 133.6 139.1 -3.95

23331 143.3 150.2 -4.59

24880 148.8 155.1 -4.06

27196 153.8 162.2 -5.18

30008 161.1 170.4 -5.46

32583 168.1 177.6 -5.35

35026 174.2 184.1 -5.38

37215 178.9 189.8 -5.74

40003 185.9 196.7 -5.49

42500 192.0 202.8 -5.33

44998 197.4 208.7 -5.41

47463 202.7 214.3 -5.41

49992 208.8 219.9 -5.05

Figure 6 Comparison of experimental and theoretical
stagnation line Nusselt numbers.

Since the data appear to fall on a straight line, a linear
relation between logνD and log ReD is suggested. A least
squares linear curve-fit yields

log NuD = 0.1813+ 0.476 log ReD

or,

NuD = 1.199 Re0.476
D .

The standard error of the curve-fit is defined by Eq. (8)
of §4, and is

SY = 0.968.

Since NuD varies from 117.1 to 208.8, SY varies between
0.46% to 0.83%.

Also shown in the table and figure is the theoretical re-
sult obtained from laminar boundary layer theory, namely

NuD = 1.141 Re0.5
D Pr0.4; Pr ≈ 1.

The discrepancy between theory and experiment varies
from 2.9% to 5.7%. Since these values are considerably
larger than the standard error of the curve-fit, it is clear
that precision error is a minor issue. Then following Rule
1 of §2, no further consideration of precision error is jus-
tified. The discrepancy between theory and experiment
should be viewed as a bias error: however this bias error
is relatively small and should not be of concern for usual
engineering purposes. Whether the bias error should be at-
tributed to the instrumentation and experiment technique,
or to an inadequacy of the theoretical result will be dis-
cussed in Case Study No. 1.

Since the experiment used only one fluid, namely air
with a Prandtl number Pr = 0.69, the results cannot be
used to deduce the Prandtl number dependence of the Nus-
selt number (see BHMT §4.2.3). We can however accept the
theoretical dependence of NuD or Pr0.4 for Pr ≈ 1, and for
Pr = 0.69 rewrite the correlation of our data as

NuD = 1.391 Re0476
D Pr0.4; Pr ≈ 1.

Notice that the 22% discrepancy in the constants in the
previous two equations is meaningless because the expo-
nents on the Reynolds numbers are different. An alterna-
tive approach would be to assume that a one-half power
dependence on Reynolds number is correct, and perform
a least squares curve-fit of the data accordingly. Then the
discrepancy in the constants will be of a similar magnitude
to the errors shown in the Table 4.

5 Uncertainty

The terms “error” and “uncertainty” are often used inter-
changeably when discussing experimental results, which
can be confusing to the beginning student. We need to be
more precise and will follow the practice described below.
We have already defined the errors in a measurement to
be the difference between the measured value and the true
value. However, as noted in §3, we never know the true
value, so that the actual error is a rather elusive quantity.
Thus, instead of actual error, we must work with estimated
errors.

Precision Uncertainty. For the precision uncertainty in
a measurement we estimate a probable error in the mea-
surement. We need to say that we are C% confident that
the true value Xtrue of a measurement Xi lies within the
interval Xi±PX : then PX is called the precision uncertainty
at a confidence level of C%. This means that if we specify a
95% confidence level estimate of PX , we would expect Xtrue

to be in the interval Xi±PX about 95 times out of a 100. If
our sample comes from a normal population and the sam-
ple is large, the statistics theory in §10 gives that PX can
be taken to be approximately twice the standard deviation
at the C = 95% level,

PX � 2SX(C = 95%, N > 10). (9)
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In practice we almost always assume a normal popula-
tion and use Eq. (9) for N > 10. In §10 we will see that
Eq. (9) can be corrected for smaller samples; however if we
are truly concerned about precision error we should avoid
small samples—which is often quite feasible.

The probable error in a sample mean is less than in
the individual measurements because SX � SX/N1/2 for N
large. Then the precision uncertainty of the sample mean
is

PX � 2SX(C = 95%, N > 10). (10)

Equation (10) is very important: it is the result of the very
powerful central limit theorem of mathematical statistics
and will be discussed further in §10. It is important for
two reasons:

1. When we use modern data acquisition systems for
steady state experiments, we usually automatically
average measurements over an interval of time be-
fore even recording data. For example, we may sam-
ple a sensor signal at a frequency of 5 Hz over an
interval of 2s and display a “running” mean of 10
measurements.

2. When we do have scatter due to precision errors, we
are only really concerned with the mean value—that
is why we take a sample average. It is always the pre-
cision of the mean that is pertinent to further data
processing.

The importance of Eq. (10) has not been properly appreci-
ated in many engineering experimentation texts. Figure 7
illustrates Eqs. (9) and (10).

X
6 7 8 9 105

X − PX

X − PX

X + PXX

X + PX

Figure 7 Precision uncertainties for a single measurement PX ,
and for a sample mean, PX .

Now consider the situation where we have only one
measurement X1. What can we say about the precision
uncertainty? We do not have a sample standard deviation
to use for this purpose. All we can do is estimate (often,
very roughly) a precision error from the nature of the mea-
surement. For example, if we have a temperature given on
a digital readout to 0.1°C and the temperature is not fluc-
tuating by more than about 0.1°C, we can take PX � 0.1°C.
Obviously, we cannot make a precise statistical statement
at a specified confidence level. If precision errors are of
concern we should make every effort to obtain a data sam-
ple, and should not rely on a single measurement. On the
rare occasion that we must rely on a single measurement,
it must be understood that a precise statement about pre-
cision error cannot be made.

Our major concern for a sample was the uncertainty of
the sample mean. Similarly, when we consider precision
errors for a curve-fit of data (xi, Yi), our major concern is
the probable error, or uncertainty of the curve-fit: Ŷ for a
curve-fit is like a “mean” value analogous to X for a sample
of values of a single variable. The precision uncertainty for
the straight-line curve-fit is

PŶ = 2

{
S2
Y

[
1
N
+ (x − x)

2

Sxx

]}1/2

(11)

(C = 95%, N > 10)

where SY is the standard error defined by Eq. (8), and

Sxx =
∑
x2
i −

(
1
N

)(∑
xi
)2
.

Figure 8(a) shows that PŶ depends on how far x is away
from x: it is a minimum at x = x. Equation (11) is said to
give the 95% confidence interval, and gives the range where
the curve fits will fall 95% of the time for repeated sets of
measurements, as shown in Fig. 8(b). If the purpose of the
experiment is to validate a theoretical model, and if the
theoretical relation Y(x) lies within the 95% confidence in-
terval, we would conclude that we are 95% sure that the
model is correct (or conversely, our experiment was valid:
we seldom know which viewpoint to take!).

Of less importance is the uncertainty associated with
a single measurement. Again suppose we have a curve-
fit of data (xi, Yi) and we take one additional data point
xN+1, YN+1. The 95% prediction interval gives the range in
which we are 95% confident this data point will fall, and is
given by

PY = 2

{
S2
Y

[
1+ 1

N
+ (x − x)

2

Sxx

]}1/2

(12)

(C = 95%, N > 10)

which is shown in Fig. 8(c). Notice that PY is always larger
than PŶ , analogous to PX being greater than PX for a sam-
ple. As for a sample, we seldom have use for PY ; it is PŶ
that is of major concern (see Example 9).

(a)

Y + PY
^^

Y − PY
^^

x

Y
Y = mx + C
^
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(b)

Y + PY
^^

Y − PY
^^

Y

x

(c)

Y + PY
^

Y = mx + C
^

Y − PY
^

Y

x

Figure 8 (a) Precision uncertainty of a straight line curve
fit—the confidence interval. (b) Illustration of curve fits within
the confidence interval. (c) Precision uncertainty of a single data
point—the prediction interval.

Bias Errors. For a bias error we should estimate a reason-
able upper bound as best we can, based on our knowledge
of the test rig, instrumentation and technique, our under-
standing of the physical phenomena involved and check
tests, eg. a mass or energy balance.. We shall call this esti-
mate bias uncertainty B. If there is more than one source of
bias error, then we should sum arithmetically to obtain the
upper bound (worst case).1 Specification of bias uncertain-
ties is always difficult and can be quite controversial: be-
ginning students are often understandably confused when
faced with the problem of specifying a bias uncertainty.
One of the main objectives of this manual is to show the
student how bias errors can be handled (see Rule No. 2 in
§2). At the end of the day you cannot say more than that
your experimental result may have a bias error as large as
B. It is up to the user of the result to judge whether this
uncertainty is acceptable or not. A design engineer who
needs to use the result for an engineering design, with its
customary generous safety factors, is less demanding than
a research engineer who seeks to validate a test rig or pub-
lish a paper in an engineering science journal.

The best way to identify a bias error is by benchmark
testing, if possible. Indeed, it is good practice to design
an experimental rig to facilitate benchmark testing. For
example, consider building a flow loop to determine fric-
tion factors for a rectangular cross-section duct with one
surface having parallel ribs to enhance heat transfer (e.g.,
BHMT Fig. 4.48). We should “benchmark” the rig by first
obtaining friction factors for a smooth-wall duct or tube,
for which accurate friction factor data are available. Such
testing will indicate if there is a significant bias error that
could be attributed to the sensors, data acquisition unit,
or the design of the rig and sensor installations.

It is most important to understand that bias uncer-
tainty differs from precision uncertainty in the following
sense. We are usually concerned with the precision un-
certainty of a sample mean or a curve-fit: these precision
uncertainties can be reduced by increasing the number of
data points used. On the other hand, a bias uncertainty
is independent of sample size: it is the same for one data
point as for a sample of 100 data points.

Example 8. Turbulent Flow in a Smooth Tube.

In an experiment to determine the friction factor for tur-
bulent flow of water in a smooth wall tube, the pressure
drop ∆P over a length L was measured over a range of
flow rates. Table 5 shows the calculated results as friction
factor f = (L/D)∆P/(1/2ρV 2) versus Reynolds number
ReD = ρVD/µ. Previous experimental work has shown
that a simple power low f = CRem should calculate such
data well. Thus we seek a best squares linear curve fit of
log f(= Ŷ ) versus log ReD(= x), to obtain

Ŷ = −0.208x − 0.6985.

Then m = −0.208 and C = 10−0.6985 = 0.200, and the
power law is

f = 0.200Re−0.208
D .

Y − PY

Y − PY

Y + PY
Y + PY
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<

log f = −0.208 log ReD − 0.6985
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Figure 9 Log f versus log ReD: least squares curve fit, and 90%
prediction and confidence intervals.

Figure 9 shows log f versus log ReD and the least
squares straight line curve fit. Also shown are the 95% pre-
diction interval ±PY calculated from Eq. (12), and the 95%
confidence interval ±PŶ calculated from Eq. (11). Values
of PY and PŶ are as given in Table 5. The precision of the
data looks good, but we should give a meaningful quanti-
tative evaluation. Once the data have been curve fitted, it
is the precision of the curve fit that is of concern, not the

1This recommendation differs from current common practice: in §13 we will discuss other conventions.
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precision of individual data points. Thus we must exam-
ine the 95% confidence interval for the curve fit. Consider
ReD = 3.505× 104; pertinent results include

Ŷ = log f̂ = −1.6438 PŶ = 0.003071.

Then Ŷ − PŶ = −1.6438 − 0.003071 = −1.64751. Taking
antilogs,

f̂ = 0.022709;

f̂ − Pf̂ = 0.022516

f̂ − (f̂ − P̂f )
f̂

= 8.5× 10−3 = 0.85%.

A check of the data shows that this is the worst case, i.e.,
the largest deviation on a percentage basis. This result tells
us that if we were to repeat the experiment, we would be
95% confident that the new least squares curve fit will not
deviate from f = 0.200 Re−0.208

D by more than 0.85%. We
conclude that our data is indeed very precise: the precision
uncertainty in our result is very small.

Comments:

1. Notice that we compared f values, not log f values.
Since the effect of taking logarithms is to reduce the
ranges of the variable, so too are errors reduced.
Check that

Ŷ − (Ŷ − PŶ )
Ŷ

is considerably smaller than

f̂ − (f̂ − Pf̂ )
f̂

.

2. We very often do least squares curve fits on a loga-
rithmic basis in order to take advantage of the fact
that power laws become straight lines. Linear curve
fits can be done by all simple computational aids.
From the viewpoint of rigorous statistical analysis,
minimizing sums of squares of deviations on a loga-
rithmic basis is not quite the same as when the orig-
inal variables are used. This rather subtle point is
ignored in general engineering practice.

3. Our least squares curve fit assumed that the preci-
sion error was contained in f through ∆P , and that
the Reynolds number calculated from the flow rate
was much more precise. This choice resulted from
the observation that the flow rate, measured by a tur-
bine flow meter, showed much smaller fluctuations
than did the pressure drop measured using a pres-
sure transducer with A/D conversion.

4. Notice in Table 5 that four significant figures have
been given for f . No more than three are justified
based on the least count of the ∆P measurement:
the extra figure is given to aid further data process-
ing. Values of f calculated from the curve fit should
not be specified to more than three figures.

Table 5 Friction factors and 95% confidence and prediction
intervals for a power law least squares curve fit.

ReD × 104 f Ŷ = log f̂ PY PŶ
3.505 0.02295 −1.6438 0.0072 0.0031

3.809 0.02215 −1.6513 0.0071 0.0027

3.958 0.02221 −1.6548 0.0070 0.0025

4.217 0.02213 −1.6605 0.0069 0.0023

4.486 0.02131 −1.6661 0.0068 0.0021

4.769 0.02118 −1.6716 0.0068 0.0019

4.995 0.02124 −1.6758 0.0068 0.0018

5.243 0.02100 −1.6802 0.0067 0.0017

5.922 0.02032 −1.6912 0.0067 0.0016

6.332 0.01992 −1.6972 0.0067 0.0017

6.735 0.01971 −1.7028 0.0067 0.0018

7.071 0.01958 −1.7072 0.0068 0.0019

7.443 0.01933 −1.7118 0.0068 0.0021

7.812 0.01926 −1.7162 0.0069 0.0023

8.176 0.01928 −1.7203 0.0070 0.0024

8.734 0.01895 −1.7263 0.0071 0.0027

8.951 0.01882 −1.7285 0.0071 0.0028

Example 9. A Natural Convection Thermosyphon.

Oil-cooled high voltage transformers can be modelled as
a stack of heated plates characterized by the plate width
and thickness, and the gap width. The oil is confined to
move upward around the stack by natural convection: oil
leaving the top of the stack is piped back to the bottom
to form a thermosyphon loop. For design purposes it is
necessary to have correlations for heat transfer from the
plates, which are presented in the form

Nu = f(Ra,geometric parameters)

where the Nusselt and Rayleigh numbers are usually based
on a characteristic length Lc equal to flow surface area di-
vided by flow perimeter. For long plates Lc = 2a+t, where
a is the plate half-width, and t is the plate thickness as
shown in Fig. 10. The Rayleigh number is also based on
the isothermal plate temperature and the average of the
upstream and downstream temperatures.

Figure 10 Natural convection thermosyphon system.
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Typical results are shown in Fig. 11 for a plate gap
H = 1.27 cm, giving a gap to the plate half-width ratio
H/a = 0.314. The figure shows experimental data points
and the following lines:

• The least squares linear curve fit for log Nu versus
log Ra giving Nu = 0.031Ra0.399.

• The 95% confidence interval for the regression line.

• The 95% prediction interval for the data.

The scatter in the data is seen to be relatively large
giving a 95% prediction interval of about ±20% . However,
since there are many data points, the 95% confidence inter-
val for the regression line is much smaller: it is less than
±4% in the middle of the Rayleigh number range.

N
u

Ra

5

3

2

10
1E+7 2

5

95% Confidence Interval
95% Prediction Interval

Figure 11 Experimental results of Nusselt numbers for the
thermosyphon system.

From the point of view of the user of these results it is
only the 95% confidence interval that is relevant because
it indicates the uncertainty of the correlation given by the
least squares regression line. The indicated confidence in-
terval, typical of heat transfer correlations, is quite ade-
quate for engineering purposes. The 95% prediction inter-
val may be of interest to the experimentor. The relatively
large value, indicating considerable scatter in the data, is
due to difficulties in performing these experiments. The
stack of copper plates has a large time constant that makes
it difficult to obtain a true steady state when laboratory
conditions vary. Also, the flow in the natural convection
thermosyphon is characterized by a variety of minor in-
stabilities that possibly causes the flow pattern to vary de-
pending on how parameter values are changed, e.g., if the
Rayleigh number is increased or decreased to reach a new
test condition. Improvements in the conduct of the exper-
iments may yield more precise data and the same confi-
dence level with fewer data points, which may have some
merit.

Example 10. A Pressure Transducer.

Let us return to the silicon piezoresistive pressure sensor
described in Example 5. The set-up considered involved
a data acquisition system coupled to a PC. Data are sam-
pled at 5 Hz and averaged over 2s: the displayed value

is a running average of 10 measurements, and the preci-
sion errors in this mean value will usually be negligible.
(But see Example 15, which deals with the quantitization
error associated with analog to digital signal conversion in
a data acquisition system.) Thus we decide that the errors
specified by the manufacturer should be taken as bias er-
rors. For example, consider a measurement at 50% of full
scale. The sum of bias errors due to various sources was
found to be±4.35% for a “typical” sensor and±5.25% max-
imum. That is, the manufacturer is giving a guarantee that
the maximum bias error will never be larger than ±5.25%.
Since manufacturers tend to be conservative in their speci-
fications (in order to avoid law suits!), the actual bias error
will very seldom approach this value. Nevertheless, all we
can say is that the bias uncertainty in the pressure mea-
surement could be as large as ±5.25% and concerned par-
ties must decide whether this value is acceptable or not.
Section 6 will show how such bias uncertainties propagate
to give a bias uncertainty in the final result.

Comments: These transducers are mass-produced and
the manufacturer tests a sample in order to arrive at the
error specifications. Thus the 4.35% value for a “typical”
transducer is related to a standard deviation for the sam-
ple. But it is important to understand that a given trans-
ducer has a unique bias uncertainty that will be somewhere
between ±5.25%—no other statements should be made.

6 Propagation of Bias Error

Experiments usually involve measurement of a number of
variables that are then used to calculate the desired exper-
imental result. Such calculations are termed data reduc-
tion, and can be accomplished using analytical formulas,
spreadsheets or computer programs. Often a number of
parameter values are also needed—such as geometrical di-
mensions and thermophysical properties. An important
issue is how an error or uncertainty in a particular mea-
sured variable affects the final result. The usual practice in
texts is to develop the concept of error propagation in con-
nection with precision (random) errors—the term “random
error analysis” is often seen. Indeed, the student should
have already seen such analyses in lower division physics
laboratory courses. Here we will introduce the concept
of error propagation for bias errors, owing to the critical
importance of bias error analysis to the design of exper-
iments. Random error propagation will be dealt with in
Section 7.

Let the calculated result y be a function of n indepen-
dent measured variables and parameters x1, x2, . . . , xn.

y = y(x1, x2, . . . , xn). (13)

Suppose xi has a bias error ∆xi. Then the resulting error
in y is

∆yi = y(x1, x2, . . . , xi +∆xi, . . . , xn)
−y(x1, x2, . . . , xn). (14)
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It is good practice to prepare a spreadsheet or computer
program to process experimental data. Then one simply
obtains y for a nominal input value of xi and then y+∆yi
for an input xi+∆xi: subtraction gives ∆yi. If the error is
small we can use a Taylor series expansion of Eq. (14) and
retain the first derivatives only to obtain

∆yi = ∂y
∂xi

∆xi. (15)

When the functional relationship is simple enough, the
derivative can be found analytically. If not, it can be
found numerically using a first order differencing scheme,
but this latter numerical approach is usually redundant.
Rather, one should always prepare a spreadsheet or com-
puter program to reduce experimental data, unless the
data reduction is very simple. It ensures reliable compu-
tations and is the basic tool for propagating bias errors. It
can also be used to propagate uncertainty associated with
random errors, if necessary.

Example 11. Bias Error in a Hot Gas Stream Tem-
perature

Let us return to the situation described in Example 4, which
involved the error in a hot gas stream temperature due to
radiation heat loss from the thermocouple. We wish to
consider two issues: (i) if over time the emittance of the
thermocouple increases from 0.85 to 0.9 due to soot-like
deposits, how does the bias error in the measured air tem-
perature change? and (ii) the duct wall temperature is not
conveniently controlled: how does the bias error in the
air temperature change if the wall is at 90 °C rather than
100 °C?

As shown in Example 4, the data reduction formula for
the air temperature is

Te = Ttc + εσhc
(
T 4
tc − T 4

w

)
∂Te
∂ε

= σ
hc

(
T 4
tc − T 4

w

)
= 5.67× 10−8

110
(5284 − 3734) = 30.1 K

∆Te = ∂Te
∂ε
∆ε = (30.1)(0.05) = 1.5 K.

∂Te
∂Tw

= −4
εσ
hc
T 3
w

= −4
(0.85)(5.67× 10−8)

(110)
(373)3 = 0.091

∆Te = ∂Te
∂Tw

∆Tw = (0.091)(10) = 0.91 K � 1 K.

Comments: We see that Te is relatively insensitive to
Tw ; a 10 K uncertainty in Tw gives only a 1 K uncertainty in
Te.

Example 12. Pressure Drop in an Enhanced Sur-
face Duct

Measurements of pressure drop for flow through smooth
tubes is a standard undergraduate laboratory experiment.
To expand the scope of the experiment, it is planned to add
an enhanced surface duct. The surface enhancement is in
the form of parallel square ribs, which is a configuration
that has been studied extensively in connection with en-
hancing heat transfer in gas-cooled nuclear reactors. A rib
height of 0.0305 mm and pitch of 3.08 mm is chosen. An
aluminum plate is machined with this profile, cut into four
strips and welded to form a square duct of nominal inside
dimensions of 10 mm by 10 mm. The duct is connected
to inlet and outlet sections to be fitted with pressure taps
and machined to give smooth walls and 10 mm square in-
side dimensions. If the flow area in the inlet and outlet
sections are not equal, the flow will either accelerate or de-
celerate and there will be an associated pressure change.
Our objective is to determine the allowable tolerance on
the inside dimensions to meet a specified allowable error
in the pressure drop measurement.

The nominal test condition is water at 300 K at a hy-
draulic Reynolds number of 105, for which the expected
pressure drop in the test duct is 100 kPa. We first calcu-
late the nominal velocity,

Re = 105 = VDh/ν
V = 105ν/Dh = (105)(0.87× 10−6)/0.01 = 8.7 m/s

and the volume flow rate is

Q̇ = VAc = (8.7)(0.01)2 = 8.7× 10−4m3/s.

The extended Bernouli’s equation applied to the flow be-
tween the pressure taps is,

P1 + 1

2
ρV 2

1 = P2 + 1

2
ρV 2

2 + f (L/Dh)
1

2
ρV 2

where V = (V1 + V2)/2. If we view the change in velocity
as causing an error in the measured pressure drop,

dP = −ρVdV.
Substituting V = Q̇/D2

h gives

dP = − 1

2
ρQ̇2

(
−4D−5

h

)
dDh

or

∆Dh = D5
h

2ρQ̇2
∆P

= (0.01)5

(2)(997) (8.7× 10−4)2
∆P

∆Dh = 6.62× 10−8∆P.

The table gives the tolerance on Dh = W the side of the
duct for specified bias errors in ∆P .

∆P ∆P% ∆Dh ∆Dh
kPa % mm mils
1 1 0.066 2.6
2 2 0.132 5.2
3 3 0.198 7.8
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Comments:

1. This duct is a replacement for one that proved to be
unsatisfactory. The original design was simpler in
that the aluminum plate had smooth wall portions
at each end: after cutting and welding, pressure taps
were inserted at each end in the smooth wall sec-
tions of the duct. When tested the results were sus-
pect and after considerable effort it was found that
the inside dimensions of the pressure tap sections
were substantially different. It was not possible to
maintain a close tolerance when welding the four
strips together due to distortion resulting from un-
even thermal expansion. Hence the need to have ma-
chined pressure tap sections to control dimensional
tolerances.

2. This example well illustrates the critical importance
of making careful calculations when designing an ex-
perimental rig. Sample data processing calculations
must be made to identify bias errors that may prop-
agate to give significant errors in the final results.

Example 13. Air–fuel Ratio of an Automobile En-
gine

The most direct method for measuring the air–fuel ratio
at a specific operating condition of an automobile engine
is to measure the fuel and air flow rates directly. Even
when the engine is on a test bed coupled to a dynamome-
ter, these measurements are not straightforward. An al-
ternative method is based on measuring the CO2, CO and
O2 content of the exhaust, provided the elemental com-
position of the gasoline is known. For example, a typical
gasoline may contain 83.3% C, 14.7% H and 2% O by mass.
Consider combustion of 100 kg of fuel; then, since air con-
tains 23.2% O and 76.8% N by mass,

83.3 kg C+ 14.7 kg H+ 2 kg O

+φ(23.2 kg O+ 76.8 kg N)
−→ 44b kg CO2 + 28dkg CO

+ 18e kg H2O+ 28f kg N2

+ 32g kg O2

where φ is the air–fuel ratio, and b, d, e, f and g are
numbers of kmols of each exhaust constituent. The small
amounts of unburnt hydrogen and nitrogen oxides in the
exhaust have been ignored. Balance equations for the
chemical elements are as follows:

H : 14.7 = 2e, thus e = 7.35

N : 76.80 = 28f , thus f = 2.742φk mol

C : 83.3 = 12(b + d)
O : 2+ 23.2φ = 32b + 16d+ 16e+ 32g.

The ratios b/d and g/b can be obtained from the exhaust
gas analysis.

In a test on a Toyota 5S-FE engine at full throttle and
6200 rpm, the measured exhaust gas composition was 7.2%

CO, 10.92% CO2 and 1.05% O2 by volume. Thus the ratios
b/d and g/b are

b/d = 10.92/7.2 = 1.517

g/b = 1.05/10.92 = 0.0962.

From the carbon balance

83.3 = 12(1.517d+ d); d = 2.758.

Also,

b = (1.517)(2.758) = 4.168;

g = (0.0962)(4.168) = 0.401.

Solving for the air–fuel ratio

φ = 32b + 16d+ 16e+ 32g − 2
23.2

= 133.4+ 44.1+ 117.6+ 12.8− 2
23.2

= 13.2.

It is difficult to obtain reliable accuracy specifications
for gas analysis equipment. Thus it is pertinent to explore
the effects of possible bias errors in the measured gas com-
position. For example, how does a 1% bias error in the
CO% affect φ? In a typical test situation φ must be cal-
culated for a large amount of test data. Using a modern
computer controlled dynameter complete complete per-
formance curves may include 50–100 tests. Thus the above
hand calculation should be automated using a spreadsheet
or computer program. Then error propagation can be sim-
ply effected by varying the relevant input to the calcula-
tions. Table 6 shows the results of such calculations. Of
particular interest is the % O2 in the exhaust. The instru-
mentation used obtained the % O2 indirectly and hence is
most prone to bias error. The table shows how the fuel/air
ratio is affected by the uncertainty in % O2.

Table 6 Propagation of bias errors in exhaust and fuel
composition. Reference data of Example 13.

Perturbed
Parameter value,% φ ∆φ
% CO, 6.2 13.44 0.201

exhaust 8.2 13.03 −0.180

% CO2 9.92 13.13 −0.079
exhaust 11.92 13.28 +0.070

% O2, 2.05 13.47 0.26
exhaust 1.55 13.74 0.53

0.55 12.95 −0.26
0.05 12.68 −0.53

% O 1 13.47 0.27
0 13.74 0.53

% C,H 83.8, 14.2 13.89 −.123
84.3, 13.7 12.96 −.248
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7 Propagation of Precision Uncertainties

Since precision uncertainties are random in nature, the
propagation of precision uncertainties in measurements
through to calculated results is governed by the laws of
statistics. Consider a calculated result Y that is a function
ofN independent measurements Xi. If the uncertainties Pi
are small enough we can use a first order Taylor expansion
of Y to write

Y(X1 + P1, X2 + P2, . . . , XN + PN)

� Y(X1, X2, . . . , XN)+ ∂Y
∂X1

P1+ ∂Y
∂X2

P2+· · ·+ ∂Y
∂XN

PN.

Now Y is a linear function of the independent variables
and a theorem of mathematical statistics can be used to
write

PY =
⎡⎣ n∑
i=1

(
∂Y
∂Xi

Pi
)2
⎤⎦1/2

(16)

where in Eq. (16) all the uncertainties in the Xi must be at
the same confidence level. As was noted for bias uncertain-
ties in §6, the preferred method for propagating precision
uncertainties is by using a spreadsheet or computer pro-
gram. Then Eq. (16) is replaced by

PY =
⎡⎣ N∑
i=1

∆Y 2
i

⎤⎦1/2

(17)

where ∆Yi is the change in Y resulting from a change Pi in
Xi.

If Y depends only on a product of the independent mea-
surements Xi, for example

Y = CXm1
1 Xm2

2 . . .

it is then possible to derive a convenient form of Eq. (16),
namely

PY
Y
=
⎡⎣∑
i

(
mi

Pi
Xi

)2
⎤⎦1/2

(18)

which is particularly easy to use since fractional uncer-
tainty in the result is directly related to the fractional er-
rors in the individual measurements.

The propagation of precision uncertainties has re-
ceived more attention than any other aspect of error anal-
ysis of experiments. However, in this manual we make the
case that useful information is seldom derived by carrying
out a precision error propagation calculation. There are
two reasons underlying this conclusion:

1. Use of modern electronic instrumentation, computer
control of experiments, and computer based data ac-
quisition and processing, often reduces precision er-
rors to a negligible level.

2. When precision errors are not negligible, the pro-
cessed experimental data usually allows a direct de-
termination of the precision error that is more reli-
able than values obtained by propagating the errors
in individual measurements. This is because we usu-
ally generate parametric data in an experiment, e.g.,
convective heat transfer coefficient as a function of
flow velocity, hc(V). After curve-fitting the data, the
standard error of the curve-fit is a much more re-
liable indicator of the uncertainty than an estimate
obtained by propagating the uncertainties in individ-
ual measurements used to calculate hc . The scatter
seen in a graph of hc versus V is the precision error
in the measurement of hc (see Rule No. 3 in §2).

Example 14. A Coaxial Tube Heat Exchanger.

A test is performed to determine the performance of a
two-stream counterflow water–to–water heat exchanger at
nominal flow conditions. The measured temperatures are:

TH,in = 44.8 ◦C, TH,out = 31.3 ◦C,
TC,in = 23.5 ◦C, TC,out = 30.0 ◦C,

and measured flow rates are

ṁH = 0.0562 kg/s; ṁC = 0.121 kg/s.

The precision error in the temperature is taken to be
the least count of the digital thermometer, and is ±0.1 °C.
The precision error in the flow rates is taken to be the least
count of the rotameter scales and is ±1.5× 10−3 kg/s. Let
us propagate these precision errors to determine the preci-
sion uncertainty in the effectiveness, the number of trans-
fer units, and the exchanger energy balance.

From Eq. (8.42) of BHMT, the number of transfer units
for a counterflow exchanger is

Ntu = 1
1− RC ln

1− εRC
1− ε

where RC = Cmin/Cmax, C = ṁcp , Ntu = UA/Cmin, and
ε = (TH,in−TH,out)/(TH,in−TC,in), since ṁHcpH = Cmin. For
equal specific heats cpC = cpH , hence

RC = ṁH/ṁC = 0.464.

The effectiveness ε is

ε = 44.8− 31.3
44.8− 23.5

= 13.5
21.3

= 0.634

and

Ntu = 1
1− 0.464

ln
1− (0.634)(0.464)

1− (0.634)
= 1.225.

We will first propagate the precision errors in temperature
to the effectiveness.

ε = TH,in − TH,out

TH,in − TC,in
∂ε

∂TH,in
= 1

TH,in − TC,in −
TH,in − TH,out

(TH,in − TC,in)2

= 1
21.3

− 13.5
21.32

= 1.72× 10−2K−1
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∂ε
∂TH,out

= − 1
TH,in − TC,in

= − 1
21.3

= −4.69× 10−2K−1

∂ε
∂TC,in

= TH,in − TH,out

(TH,in − TC,in)2

= 12.5
21.32

= 2.97× 10−2K−1

Pε =
⎡⎣ 3∑
i=1

(
∂ε
∂xi

Pi
)2
⎤⎦1/2

=
[(

1.72× 10−2 × 0.1
)2 +

(
−4.60× 10−2 × 0.1

)2

+
(
2.97× 10−2 × 0.1

)2
]1/2

= 5.81× 10−3.

Thus, ε = 0.634 ± 5.81 × 10−3 = 63.4% ± 0.58%. Next we
propagate the precision errors in flow rate to the capacity
rate ratio

RC = Cmin

Cmax
= CH
CC

= ṁH

ṁC
, since cpH ≈ cpC

∂RC
∂ṁH

= 1
ṁC

= 1
0.121

= 8.26;

∂RC
∂ṁC

= −ṁH

ṁ2
C
= −0.0562

0.1212
= 3.84

PRC =
[(

8.26× 1.5× 10−3
)2

+
(
3.84× 1.5× 10−3

)2
]1/2

= 1.37× 10−2.

Thus RC = 0.464 ± 0.014. Then we can propagate the er-
rors in ε and RC to the number of transfer units,

Ntu = 1
1− RC ln

(
1− εRC

1− ε
)

∂Ntu
∂RC

= −ε
(1− RC) (1− εRC) + ln

(
1− εRC

1− ε
)

1

(1− RC)2

= −0.634
(1− 0.464) (1− (0.634)(0.454))

+ ln
(

1− (0.634)(0.464)
1− 0.634

)
1

(1− 0.464)2

= 0.610

∂Ntu
∂ε

= 1

(1− εRC) (1− ε)
= 1

(1− (0.634)(0.464)) (1− 0634)
= 3.87

PNtu =
[(

3.87× 5.81× 10−3
)2

+
(
0.61× 1.37× 10−2

)2
]1/2

= 2.4× 10−2.

Thus, Ntu = 1.225 ± 0.024(2.0%). We can also propagate
the precision errors to the exchanger energy balance. From
Eq. (8.4) of BHMT the exchanger energy balance is

Q̇H = Q̇C
Q̇H =

(
ṁcp

)
H

(
TH,in − TH,out

)
;

Q̇C =
(
ṁcp

)
C

(
TC,out − TC,in

)
.

For cpH ≈ cpC = 4175 J/kg K,

Q̇H = (0.0562)(4175)(44.8− 31.3) = 3168 W;

Q̇C = (0.121)(4175)(30.0− 23.5) = 3284 W.

Q̇H − Q̇C
Q̇H

= 3168− 3284
3168

= −3.7%.

Let us estimate the precision uncertainty in Q̇C

∂Q̇C
∂ṁC

= cpC
(
TC,out − TC,in

)
= (4175)(30.0− 23.5) = 2.71× 104

∂Q̇C
∂TCout

=
(
ṁcp

)
C
= (0.121)(4175) = 505;

∂Q̇C
∂TCin

=
(
ṁcp

)
C
= −505.

PQ̇C =
[((

2.71× 104
)(

1.5× 10−3
))2 + (505× 0.1)2

+ (−505× 0.1)2
]1/2 = 82.2 W

PQ̇C
Q̇C

= 82.2
3284

= 2.5%.

Similarly,

PQ̇H = 90.9 W

PQ̇H
Q̇H

= 90.9
31.68

= 2.9%

P(Q̇H−Q̇C) =
[
(82.2)2 + (90.9)2

]1/2 = 123,

which can be compared with |Q̇H − Q̇C | = 116.
As mentioned in §7, the preferred method for propa-

gating precision uncertainties is by using a spreadsheet or
computer program; then Eq. (17) is used, namely

PY =
⎡⎣ N∑
i=1

∆Y 2
i

⎤⎦1/2

.
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Table 7 Computer propagation of precision uncertainties.

Xi ∆Xi Yi(Xi +∆Xi) Yi(Xi −∆Xi) ∆Y i ∆Y 2
i

TH,in ±0.1 K 1.231 1.218 0.0065 4.23× 10−5

TH,out ±0.1 K 1.206 1.243 0.0185 3.42× 10−5

TC,in ±0.1 K 1.236 1.213 0.0115 1.32× 10−5

ṁH(kg/s) ±1.5× 10−3 1.232 1.217 0.0075 5.73× 10−5

ṁC(kg/s) ±1.5× 10−3 1.221 1.228 0.0035 1.23× 10−5

A computer program was written to process the data for
this experiment, and, in addition to calculating the exper-
imental value of Ntu, also calculates the expected values
using correlations for the hot- and cold-side heat transfer
coefficients. The results are as shown in Table 7 and

PY =
[
4.23× 10−5 + 3.42× 10−5 + 1.32× 10−5

+6.73× 10−5 + 1.23× 10−5
]1/2

= ±0.0242

which is to be compared with the value of ±0.024 obtained
by partial differentiation.

Comments:

1. Notice that ∂ε/∂TH,in is relatively small due to way
TH,in appears in both numerator and denominator of
the formula for ε.

2. The important results are that

Pε
ε

= 0.92%

PNtu
Ntu

= 2%, and

PQ̇C
Q̇C

= 2.5%.

3. Since P(Q̇H−Q̇C ) is about the same as (Q̇H − Q̇C), we
might argue that the 3.7% discrepancy in the energy
balance can be attributed to precision errors. How-
ever, such a conclusion would be premature. We
must first obtain a number of data sets and ascertain
that the discrepancy does vary in a random manner.

4. When using the computer program to propa-
gate precision errors, our choice of ∆Y i =
1
2 (∆Yi(Xi +∆Xi)+∆Yi(Xi −∆Xi)) is arbitrary. We
have not linearized the equations as is done when
using partial differentiation: thus positive and nega-
tive values of a given ∆Xi can give different values of
∆Y i. In an extreme case the difference can be large—
but of no concern because then the precision error
is too large to have a meaningful experiment.

5. The purpose of this example was to demonstrate
how precision errors are propagated. We will re-
turn to this heat exchanger experiment in Case Study

No. 4, where a more complete error analysis will be
presented.

Example 15. Analog/Digital Signal Converter
Quantization Error.

Let us return to the boiling heat transfer experiment de-
scribed in Example 6, where the heat flux is calculated us-
ing a lumped thermal capacity model for the temperature–
time response,

qA = −ρcV dT
dt
.

Using a central difference numerical approximation for the
derivative and V/A = D/C for a sphere gives

q = −C Tn+1 − Tn−1

2∆t
; C = ρcD/6.

The analog to digital (A/D) converter in the data acquisi-
tion system replaces the continuous voltage signal from
the thermocouple by a sequence of discrete values. For ex-
ample, an 8-bit A/D converter can record 28 = 256 voltage
levels. If it is to have a range of 10 mV, then its least count
is necessarily 10/256− 0.04 mV. The quantization error is
a precision error; when designing the experiment it is of
value to predict the effect of this error on the calculated
heat flux, by propagating the error through the heat flux
calculation.

We can assume that C and∆t are precisely known, then

∂q
∂Tn+1

= − C
2∆t

;
∂q
∂Tn−1

= C
2∆t

.

Using Eq. (16)

Pq =
[( −C

2∆t
PTn+1

)2

+
(
C

2∆t
PTn−1

)2
]1/2

= C
2∆t

[
P2
Tn+1

+ P2
Tn−1

]1/2
.

For a numerical example consider a sampling fre-
quency of 10 Hz (∆t = 0.1 s), a least count for the tem-
perature data acquisition of 0.025 K, and a cooling rate of
2 K/s (corresponding to film boiling). Then

Pq = C
(2)(0.1)

(
0.0252 + 0.0252

)1/2 = 0.177C.
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For a cooling rate of 2 K/s, q = 2C , then

Pq
q
= 0.177

2
= 8.85%.

When the experiment is performed we would expect to see
noise of at least this magnitude in q in the film boiling
regime.

8 Use of Error Bars

Graphical presentation of experimental results is useful to
show trends in the data and to indicate the precision of the
data: you have seen graphs of experimental data in text-
books and must have prepared such graphs in physics or
chemistry laboratory courses. A recent trend is to show
error bars on a graph. At first sight it seems like a good
way to show uncertainty on the graph; however, often error
bars are inappropriately used and can be quite misleading.
In this section we focus on the use of error bars to display
bias uncertainties, and the related concepts of error rect-
angles and error vectors. We will also briefly discuss why
error bars should not be used for precision errors.

First consider a set of data points (xi,yi) where xi is
assumed to have negligible error, while yi has negligible
precision error but is suspected to have a significant bias
error over part of the xi range. For example, xi could be a
pressure differential across a combination of pipe fittings,
and yi the resulting flow rate. The flow meter used to
measure flow rate has a linear response and has been cali-
brated over a specified range (see Example 2): in this range
the bias error is negligible. However, some of the data were
obtained at lower flow rates outside the calibration range
and it is known that the response of this type of flow meter
may become significantly nonlinear below the calibrated
flow rate range. The purpose of the experiment is to com-
pare the measured flow rate with the value predicted by
using standard pipe fitting loss coefficients for the indi-
vidual fittings. Such data is found in fluid mechanics texts
and handbooks.

Figure 12(a) shows the results obtained. At higher flow
rates the data shows a small uniform deviation from the
predicted values, but at lower flow rates the deviation in-
creases significantly. The question is whether these large
deviations are real, or are they caused by bias error in the
flow meter. Figure 12(b) shows the data again with the
calibration range of the flow meter indicated: the data in
question do lie outside the calibration range. Based on in-
formation on the type of flow meter the bias uncertainty
is estimated: in this case it is not symmetrical and is ac-
tually one-sided from the known behavior of calibration
constants of such flow meters. The error bars show the
magnitude of the estimated bias uncertainty, and it is seen
that bias error could indeed explain the increased devia-
tions. The small uniform deviation is attributed to an in-
adequacy in the prediction procedure.

(a)

Prediction

y

x

(b) y

x

Calibration Range

Figure 12 Flow rate y versus pressure drop x for a
combination of pipe fittings (a) Data and predicted variation. (b)
Error bars showing estimated bias uncertainty in the flow rate
measurements.

Next, consider a set of data points of independent vari-
ables (xi,yi) where xi and yi have negligible precision er-
ror and where both are suspected to have a bias error. The
purpose is to evaluate the theory that predictsy =mx+C .
In this case our best estimation of the upper bound of the
bias errors yield symmetrical uncertainties in both vari-
ables. Figure 13 shows the data and the theory. Since
the variables x and y are independent we can draw error
rectangles that display the bias uncertainty for each data
point. We conclude that the model underlying the theory
does not give accurate predictions and, if greater accuracy
is desired, an effort should be made to refine the model.

y

x

y = mx + C

Figure 13 Use of error rectangles to show bias uncertainty
when x and y are independent variables.

Finally we consider a situation that too often appears in
reports on experiments. Engineers prefer to graph results
in terms of dimensionless variables in order to obtain the
greatest generality (see, for example, BHMT Section 4.2.3).
In fluid mechanics we often plot a drag coefficient, fric-
tion factor or Euler number versus Reynolds number to
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present results of a pressure drop experiment. Consider
data presented in terms of Euler number, Eu = ∆P/ρV 2

versus Reynolds number Redh = Vdh/ν for pressure drop
across a perforated plate.

The hole diameters are dh, and V is the gas velocity
based on free-flow area, i.e., the bulk velocity through the
holes. Figure 14(a) shows some test data together with a
theoretical prediction. The precision uncertainty is seen to
be negligible, which is due to the design of the test rig: the
experiment is computer controlled and all data is obtained
using a computer based acquisition system. Again we see a
significant deviation at low flow rates (low Reynolds num-
bers), and ask the question whether this deviation could
be due to bias error in the flow measurements. At first
we might be tempted to draw error rectangles as shown in
Figure 14(b) and conclude that bias error could indeed ex-
plain the deviation of the data point from the theory. But
this would be incorrect because the variables (x,y) of the
graph are correlated—the velocity V appears in both vari-
ables. Thus we need to use an error vector to indicate the
impact of bias error in V . Figure 14(c) shows the effect of
recalculating the data point accounting for a bias error es-
timate of ±10%: notice that Eu decreases and Re increases
as a result (and vice-versa). We would now conclude that
the theory is inaccurate at this Reynolds number.

(a) Eu

Redh

(b)

Redh

Eu

(c)

Eu

Redh

(d)

∆
p

V

Figure 14 Euler number versus Reynolds number for flow
through a perforated plate. (a) Experimental data and a
theoretical prediction. (b) Error rectangles showing estimated
bias uncertainties in Eu and Redh . (c) An error vector for
estimated bias uncertainties in Eu and Redh . (d) Replot in terms
of the primitive variables pressure drop and velocity with an
error bar showing the bias uncertainty in V .

Because of the difficulties presented by correlated vari-
ables it is good practice to examine errors on graphs of
primitive, not derived, variables. In the foregoing example
a graph of ∆P versus V could be prepared for this pur-
pose: then the effect of bias error in V only affects the
abscissa variable, as shown in Figure 14(d). Unfortunately,
in attempts to shorten reports to journal papers, graphs in
terms of primitive variables are usually omitted in favor of
graphs in terms of dimensionless groups. Such graphs are
important and useful, but not for examining issues relating
to errors.

So far we have focused on situations where precision
errors are negligible and only bias errors are of concern.
Now consider a situation where precision errors are sig-
nificant and bias errors are negligible. Figure 15 shows
a data set (xi, Yi) where xi has negligible total error and
Yi has a significant precision errors: also shown is a least
squares curve-fit. Often one sees error bars on such data
points, but does this practice have value? The precision
error of the data is already indicated by the scatter about
the least squares curve-fit. This scatter could be quantified
by indicating the prediction interval PY defined by Eq. (12)
as shown in Figure 15. But we are not really interested in
the precision of individual data points: we are concerned
with the precision of the curve-fit, which has an uncertainty
given by Eq. (11). Thus, it would be more appropriate to in-
dicate PŶ as shown in Figure 15. The displayed band then
covers the precision uncertainty of the curve-fit at the 95%
level. It is Figure 15 that shows the users what they need
to know. Error bars on individual data points are of no
real interest, unless there are too few data for statistical
analysis.

Finally, what about the situations where bias and preci-
sion errors are both significant? (situations to be avoided
if at all possible!). The essential problem is that there is
no rational way to combine random bias errors governed
by statistical laws and fixed bias errors governed by phys-
ical laws. In simple situations a pragmatic approach can
be used, remembering Rule 2 of § 2, which can be para-
phrased “talk sense about bias errors.” For example, if in
the previous case the variable Yi had an estimated bias un-
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certainty of +B, we could replace Figure 15 by Figure 16.
Figure 16 tells the user that our experiment has yielded the
correlation indicated by the curve-fit, with the precision
uncertainty shown, but that the true result may also devi-
ate as much as the bias uncertainty shown. We have done
our best to correct for bias errors but there is possibly a
remaining bias uncertainty as indicated. Again, users must
decide whether this result is acceptable for their particu-
lar needs. The foregoing recommendation is not in accord
with the current practice of engineering professional so-
cieties and journals, and of standards organizations. Fur-
ther discussion of this conflict is deferred to § 13.

Y − PY
^

Y + PY
^ ^

Y + PY
^

^Y − PY
^

Y = mx + C
^

Y

x

Figure 15 Confidence and prediction intervals for a
straight-line least squares curve fit.

Y = mx + C
^

Y − PY
^

Y + PY
^

^

^

Y + B
^

Y

x

Figure 16 A possible display of uncertainty when both
precision and bias errors are of concern for a least square
straight-line curve fit.

Example 16. Precision Errors for Convective Heat
Transfer in an Oscillatory Flow.

Gopinath and Harder [2] report the results of an interest-
ing study of convective heat transfer from a cylinder in a
low amplitude zero-mean oscillatory flow. Figure 17 shows
some typical data for Nusselt number versus the stream-
ing Reynolds number Rs = a2ω/ν , where a is the displace-
ment amplitude of the fluid oscillation andω is the angular
frequency of the oscillation. The solid line is a R1/2

s least
square fit of the data for higher values of Rs . The preci-
sion of the data is indicated by the scatter about the least
squares fit. It can be quantified by indicating the predic-
tion interval PY defined by Eq. (12). But since we are not
really interested in the precision of individual data points,
we should rather indicate the confidence interval PŶ given
by Eq. (11), which is the precision uncertainty of the curve
fit (see also Fig. 15).

Figure 17 Nusselt number versus the streaming Reynolds
number.

Figure 18 Precision uncertainty of Nusselt number from
random error uncertainty analysis.

However, the authors chose to indicate the precision
uncertainty using error bars, as shown, for example, in Fig.
18. The error bars indicated are stated to be “from a ran-
dom error uncertainty analysis.” It is doubtful whether the
error bars convey any useful information. Firstly, since a
relatively large number of experimental data points were
obtained, the precision uncertainty PY calculated from the
scatter in the data is the true measure of random error un-
certainty. No attempt to predict the precision uncertainty
in the Nusselt number from the expected precision errors
in the primitive measurements can be more accurate or re-
liable. Secondly, the precision uncertainty of the curve-fit
should be shown, as in Fig. 15, not on the individual data
points as shown in Fig. 18. If they had only measured
one data point, then an error bar on that data point would
have been appropriate since that value would have been a
best estimate of the true value. But, when there are many
data points, the curve-fit is the best estimate of the true
values, and a random error only makes sense in terms of
the curve-fit. Thus the “spread” of the superimposed er-
ror bars in Fig. 18 gives a false impression of the precision
uncertainty of the result: it is in fact far less.
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Thus, as stated in § 8, the use of error bars to indicate
precision uncertainty is not advised (unless it is a single
sample experiment, which is rarely the case).

9 The Normal Probability Distribution

The normal (or Gaussian) probability distribution plays a
central role in the analysis of precision errors. When we
repeat a measurement a number of times we obtain a fi-
nite sample of values, as shown by the histogram in Fig.
19. As noted in § 3, the shape of the histogram is similar
to the familiar bell-shape of the normal probability dis-
tribution, and this is true for most measurements made
in usual laboratory experiments. We can regard the sam-
ple as coming from a population of values that would be
obtained when the sample size approaches infinity. Two
samples taken from this population will, in general, have
different mean values; but each approximates the popu-
lation mean at some level of uncertainty. Clearly, the dif-
ference between sample characteristics and the population
characteristics will decrease as the sample becomes larger.

200 400 600 800

Figure 19 A histogram of a sample from a normal population.

We will assume that precision errors cause the mea-
sured value to vary randomly: hence our use of the no-
tation X to represent the measurement in line with the
usual practice in probability theory. The probability den-
sity function for a random variable X having a normal dis-
tribution is defined as

f(X) = 1

σ
√

2π
e−(X−µ)

2/2σ2
(19)

where f(X)dX is the probability that a single measure-
ment of X will lie between X and X + dX. Equation (19) is
in normalized form, that is∫∞

−∞
f(X)dX = 1.0. (20)

The parameters of the distribution are the mean value µ,
defined as

µ =
∫∞
−∞
Xf(X)dX (21)

and the variance σ 2 defined as

σ 2 =
∫∞
−∞
(X − µ)2f(X)dX. (22)

The standard deviation of the distribution is defined as the
square root of the variance and indicates the width of the
distribution.

Let us consider a single measurement that is assumed
to be from a normal parent population. The probability P
that this value will fall in a specified range ±∆X about the
mean value is given by

P(µ −∆X ≤ X ≤ µ +∆X)
=
∫ µ+∆X
µ−∆X

1

σ
√

2π
e−(X−µ)

2/2σ2
. (23)

Evaluation of the integral is simplified if we introduce a
new variable z that is a normalized deviation from the
mean value,

z = X − µ
σ

(24)

and dz = dX/σ . Then Eq. (23) becomes

P(−z1 ≤ z ≤ z1) = 1√
2π

∫ z1

−z1

e−z
2/2 dz (25)

where dz = dX/σ . Since f(X) is symmetrical about µ, we
can write

1√
2π

∫ z1

−z1

e−z
2/2 dz = erf

(
z1√

2

)
(26)

where erf is the error function,

erf z1 = 2√
π

∫ z1

0
e−z

2
dz. (27)

BHMT Table B4 is a tabulation of the complementary error
function erfc(erfc = 1− erf).

We are often interested in the probability that a mea-
surement will fall within one or more standard deviations
(σ ’s) of the mean. Referring to Eq. (25), for one standard
deviation we must evaluate

P(−1 ≤ z ≤ 1) = 1√
2π

∫ +1

−1
e−z

2/2 dz. (28)

Using Table A.1 the right side of the equation is evaluated
to be 68.3%. Alternatively, we can calculate the interval cor-
responding to a specified probability which requires itera-
tion using an error function table. Some results are listed
below.

Probability Range about mean value

50 ±0.675σ
68.3 ±1.0σ
95 ±1.96σ

99.7 ±3σ
99.99 ±4σ

Suppose we have a normal parent population of a measure-
mentX. If we take a single measurementX1, we can be 95%
confident that it will fall within a±1.96σ interval about the
mean: that is, ±1.96σ is the 95% confidence limit. In prac-
tice we often round off 1.96 to 2.0 and specify ±2σ as the
95% confidence limit. Alternatively, we can be 95% confi-
dent that the mean of the parent distribution µ will fall
within ±1.96σ of the single measurement Xi.
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10 Samples From a Normal Parent Popula-
tion

Consider a sample of measurements from a parent popu-
lation that is assumed to be normal. The mean of a sample
was defined by Eq. (1) as

X = 1
N

N∑
i=1

Xi

for a sample of size N . The standard deviation of a sample
was defined by Eq. (2) as

SX =
⎡⎣ 1
N − 1

N∑
i=1

(
Xi −X

)2

⎤⎦1/2

.

The factor (N−1) rather thanN appears in Eq. (2) because
it can be shown that SX is then an unbiased (best) estimate
of the population standard deviation σ : (N − 1) is called
the degrees of freedom, denoted ν .

The precision uncertainty PX of an individual measure-
ment at a confidence level C% is defined such that we are
C% sure that the population mean µ lies in the interval
Xi ± PX . Since we do not know the population standard
deviation σ we cannot use Eqs. (23)–(26) to obtain PX . In-
stead we use a result for a parent normal population from
statistics theory, namely that

PX = tν,%SX (29)

where tν,% is the Student t-distribution variable. The value
of t depends on the degrees of freedom, ν = (N − 1), and
the confidence level, %. For ν ≥ 30 the t-distribution is
identical to the z-distribution, as shown in Figure 20. Se-
lected values for are shown below

ν t95% ν t95%

4 2.770 15 2.131

5 2.571 20 2.086

7 2.365 30 2.042

10 2.228 60 2.000

As N → ∞, t95% → 1.96 the value given in §9 for a normal
population. Also the general use of t95% = 2 for N > 10 ad-
vocated in §5 is seen to a reasonable approximation. After
all, there is always some uncertainty in error analysis!

Degrees of freedom

−4 −2 0 2 4

5
2

∞(z)

Figure 20 The Student t-distribution for various degrees of
freedom.

Let us now suppose that we take a number of sam-
ples of size N from the population. We would not expect
the mean values of the samples to be the same. The cen-
tral limit theorem of mathematical statistics states that the
sample means are also normally distributed with mean µ
and standard deviation

σX =
σ
N1/2 . (30)

In fact, sample means are normally distributed even when
the parent population is not Gaussian! This is a very pow-
erful result because, in steady state experiments, measure-
ments are usually averaged over some time period before
even recording the data. Notice that the scatter in data for
X is only 1/N1/2 times that for X.

We now come to an important question: how well does
the sample mean X estimate the population mean µ? The
standard deviation of the sample mean can be estimated
from the standard deviation of a single finite data set as

SX =
SX
N1/2 . (31)

Then, since the sample means are normally distributed, the
t-distribution can be used to write

X = µ ± tν,%SX(C%). (32)

This is a very important result since we are most often pri-
marily interested in estimating the sample mean. We can
say with C% confidence that the population mean is within
±tν,%SX of X.

Sometimes when a sample of N measurements are ex-
amined, one or more values appear to be out of line with
the rest of the values: such data points are called outliers.
If there is some good reason, based on our knowledge of
how the test was carried out, to suspect the validity of the
point, it can be discarded. For example, your laboratory
notebook might indicate that the rig was left unattended
for that test, or the ambient air condition had a significant
variation. Otherwise, one can use a statistical criterion to
identify data points that can be discarded. Chauvenet’s
criterion is recommended for this purpose. It states that
points should be discarded if the probability of obtaining
their deviation from the mean is less than 1/2N . The prob-
ability is calculated from the normal distribution (not the t-
distribution as may have been expected), and the following
table results in which the ratio of the maximum acceptable
deviation to the standard deviation is given as a function
of N .

N
(Xmax −X)

SX
5 1.65

7 1.80

10 1.96

15 2.13

20 2.24

50 2.57

100 2.81
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One often sees a simpler criterion, namely (Xmax − X) =
3SX . The table shows that this should only be used for
very large samples. For smaller samples Chauvenet’s prin-
ciple is more stringent.

Example 17. Gas Inventory of a Gas-Loaded Heat-
pipe.

BHMT Section 7.5.3 gives an analysis of gas-loaded heat
pipe performance. A key parameter is the mass of gas
loaded into the heatpipe,wg . When testing such a heatpipe
it is useful to check the amount of gas present. A simple
check involves use of measured adiabatic section and heat
sink temperatures and the length of the active portion of
the condenser, La. This length can be estimated from plots
of the axial temperature variation along the condenser due
to the sudden temperature decrease into the inactive por-
tion of the condenser (see Fig. 7.32 of BHMT). Due to axial
conduction and diffusion the temperature change is not a
step function and a precision error is introduced in “eye-
balling” the temperature profile. Typical data are tabulated
below.

Test La, cm wg , µg
1 33.3 4.99

2 27.1 5.32

3 20.6 5.51

4 16.2 5.98

5 8.4 4.33

wg = 1
N

N∑
i=1

wg,i = 5.23µg

Swg =
⎡⎣ 1
N − 1

N∑
i=1

(
wg,i −wg

)2

⎤⎦1/2

= 0.616µg.

From Eq. (30) the standard deviation of the sample mean
is

Swg =
Swg
N1/2 =

0.616√
5

= 0.275µg.

The precision uncertainty of wg is obtained from Eq. (32)
as

Pwg = t4.95%Swg = (2.770)(0.275) = 0.762µg

at the 95% confidence level.

Comments: Notice that the precision uncertainty in at the
95% level is actually greater than the standard deviation
of the measurements because the sample is too small. In
larger samples the precision uncertainty of the population
mean at the 95% level is always smaller than the standard
deviation of the measurements.

11 Curve-Fitting Samples from a Normal
Population

In §4 we introduced the concept of least squares curve-
fitting. In particular we showed how to obtain the slope
m and intercept C of a straight-line curve-fit. Equation (8)
gave the standard error of the fit as

SY =
⎡⎣ 1
N − 2

N∑
i=1

(Yi − Ŷi)2
⎤⎦1/2

(33)

where Ŷ = mx + C was the curve-fit. Recall that all the
precision error was assumed to be concentrated in the vari-
able Yi; xi was assumed to have negligible precision error.
Thus Yi is a random variable and can be taken to have
normal distribution for each value of xi. Implicit in the
theory we use is the assumption that the variance of these
normal distributions does not vary with xi, which may be
inappropriate in many situations. The regression line is
essentially a relationship between a “mean” value of Y , Ŷ ,
and x shown in Figure 21. The precision uncertainty of Ŷ
is the range that contains the parent population mean µY ,
with C% confidence, and is

PŶ = tν,%
{
S2
Y

[
1
N
+ (xi − x)

2

Sxx

]}1/2

(34)

where Sxx =
∑
x2
i − (1/N) (

∑
xi)

2, and ν = N − 2 (see, for
example, [3]).

For N large and a 95% confidence level, we set tν,% � 2
to obtain Eq. (11). Equation (34) gives the 95% confidence
interval, and gives the range where the regression lines will
fall 95% of the time for repeated measurements, as shown
in Fig. 8(b). There is a corresponding result for the 95%
prediction interval, from which Eq. (12) is obtained.

Figure 21 A straight-line best squares curve fit for a set of data
(xi, Yi) where Yi has a normal distribution at each value of xi.

We are also interested in the precision uncertainty of
the slope of curve-fit linem and the intercept C . The stan-
dard error in m is

Sm =
(
S2
Y

Sxx

)1/2

(35)
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and for the intercept

SC =
[
S2
Y

(
1
N
+ x2

Sxx

)]1/2

. (36)

The corresponding precision uncertainties are

Pm = tν,%Sm (37)

PC = tν,%SC. (38)

Again, for N large and a 95% confidence level, we set
tν,% � 2.

The Correlation Coefficient. Hand-held calculators,
spreadsheets and a great variety of computer software
are available for least squares curve-fitting and statistical
analysis of the results—an activity usually called regres-
sion analysis. The correlation coefficient r plays a central
role in statistical analysis of straight line curve-fits; it is
defined as

r = 1
N − 1

∑ (Xi −X)
SX

(Yi − Y)
SY

(39)

and, in its general form, applies to data whereXi and Yi are
random variables. A value of r = ±1 indicates a perfect
correlation of X and Y , that is, there is no scatter about
the curve-fit and the standard error is zero. In statistics
practice a straight-line curve-fit is considered reliable for
±0.9 ≤ r ≤ ±1 (the sign indicates that Y increases or de-
creases with X). Figure 22 shows how data appears at dif-
ferent values of r . The correlation coefficient thus give
a useful quick check on whether a straight-line curve-fit
makes sense. However, the correlation coefficient is only
really useful when precision errors are large, as is often the
case in experiments in the life sciences and medicine. Then
the central question concerns whether there is any correla-
tion whatsoever. In engineering experiments the precision
errors are usually much smaller and the precision uncer-
tainties of Ŷ , m and C are much more useful.

Higher Order Curve-fits. Straight-line (first order) curve-
fits are used whenever possible. In general we can fit any
function to data, often guided by theoretical modeling. In
the absence of such guides we can use a polynomial of the
form

Y(X) = a0 + a1X + a2X2 + a3X3 + · · · (40)

where we prefer to use as few terms in the series as re-
quired to obtain an acceptable standard error. The algebra
required to obtain the coefficients can be found in standard
texts, but is not really required since there are many com-
puter software products available to do the task. Although
it is relatively simple to obtain a higher order curve-fit, the
theory required for statistical analysis of the result is much
less developed than for first order curve-fits.

Correlation
Coefficient

Negative Positive

   Perfect
Correlation

Becoming
 Weaker

(a) r = −1

(b) r = −0.8

(c) r = −0.4

(d) r = −0.2 (e) r = 0 (f) r = +0.3

(g) r = +0.6

(h) r = +0.95

r

Zero Correlation

(g) r = +1

Figure 22 Data sets having different values of the correlation
coefficient r .

Multivariable Curve-fits. We are often concerned with a
dependent variable Y that is a function of a number of in-
dependent variables,

Y = f(X1, X2, X3, . . .). (41)

For example, in forced convection heat transfer, we often
seek a power law dependence of the Nusselt number or the
Reynolds and Prandtl numbers,

Nu = C Rem Prn (42)

(see, for example BHMT, Section 4.23). Again, computer
software is available for this purpose, though for some
functional relationships it may be desirable to write a new
computer program.

Regression Analysis. Engineers usually obtain a least-
squares curve fit of experimental data in order to estimate
a functional relationship between the variables, for exam-
ple, the relationship between friction factor and Reynolds
number for pipe flow. In principle, with appropriate choice
of instrumentation and careful execution of the experi-
ment, the random error can be made to be negligibly small
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(a correlation coefficient of ±1 to some specified toler-
ance). The underlying physical laws imply that there is a
unique functional relationship between the two variables,
for which the curve fit is an excellent estimate. However, in
fields such as education, the life sciences, sociology, etc.,
the situation is usually different. For example, consider a
sample of students who have their height and weight mea-
sured. The data is least-squares fitted to yield a regression
line. If the measurements are made very precisely, the ran-
dom error due to the measuring techniques can also be
made to be negligibly small. But, since there is no physical
law relating height to weight, a residual random error re-
mains that is quite large—maybe a standard error of 50%
or more.

The technique of performing least-squares curve fits
is the same for both estimating a functional relationship,
and performing a regression analysis. Owing to the critical
importance of statistical analysis in these other fields, text-
books and software are usually primarily concerned with
regression analysis. What is different between these two
applications of curve fitting is how the curve fit is used,
and the statistical procedures used to test hypotheses re-
lated to the data.

Example 18. Determination of Heatpipe Wick Pa-
rameters.

A test of a fixed conductance ammonia heat pipe is de-
scribed in Example 7.12 of BHMT. In the test the burnout
heat load is determined as a function of inclination an-
gle. Theory indicates a linear relationship between Q̇max

and sinθ (= θ for small inclinations). The test procedure
involves fixing the angle of inclination, and increasing Q̇
in finite increments until burnout is observed (a rapid in-
crease in the evaporator temperature due to dryout of the
wick). Q̇max is then taken as the average of the Q̇ values
before and after burnout. Since testing is time consuming,
the increment in Q̇ cannot be too small—usually 2–4 W and
hence a precision error results that is of this order. Pre-
cision and bias error in the power measurement are negli-
gible in comparison. The angle of inclination is obtained
by measuring the height of the evaporator above the con-
denser using a dial gage and the associated precision and
bias errors are negligible. The table below show typical
data.

Angle, radians Q̇max, W Angle, radians Q̇max, W

0.0105 90.5 0.0209 43.0

0.0122 87.4 0.0227 27.52

0.0140 78.4 0.0244 18.15

0.0157 72.7 0.0262 15.46

0.0175 56.9 0.0279 10.74

0.0192 47.4

With the angle denoted x and the burnout heat load de-
noted Y , the least squares curve fit for the data is

Y =mx + C = −5061x + 147

and is shown in Fig. 23, along with the data. If the only
significant error is the precision error in Q̇max, i.e., Y , a
statistical analysis yields the following∑

xi = 0.211;
∑
Yi = 548.17; x = 0.0192∑

x2
i = 4.39× 10−3

1
N − 2

∑
(Yi − Ŷi)2 = 14.93.

Y = −5061x + 147
∧

Q
m

ax
, W

Angle, radians

100

50

0
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Y − PY
∧ ∧ Y + PY

∧ ∧
·

Figure 23 Heat pipe data, curve fit, and confidence interval.

Then the standard error of the curve-fit is given by Eq. (33)
as

SY =
(

1
N − 2

∑
(Yi − Ŷi)2

)1/2
= 3.86 W.

We also need Sxx , defined by Eq. (34) as

Sxx =
∑
x2
i −

(
1
N

)(∑
xi
)2

= 4.39× 10−3 − (0.211)2

11
= 3.43× 10−4.

Then Eq. (34) gives the precision uncertainty of Ŷ as

PŶi = tν,%
{
S2
y

[
1
N
+ (xi − x)

2

Sxx

]}1/2

where ν = N − 2 = 11 − 2 = 9, and for a 95% confidence,
t9,95% = 2.262. Hence,

PŶi = 2.262

{
15.23

[
1

11
+ (xi − 0.0192)2

3.43× 10−4

]}1/2

.

The resulting confidence interval is also shown in the fig-
ure. The standard error in the slope m is given by Eq. (35)
as

Sm =
(
S2
Y

Sxx

)1/2

=
(

14.93
3.43× 10−4

)1/2
= 209 W/rad

and the standard error in the intercept is given by Eq. (36)
as

SC =
[
S2
Y

(
1
N
+ x2

Sxx

)]1/2

=
[

14.93

(
1

11
+ 0.01922

3.43× 10−4

)]1/2

= 4.17 W.
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The corresponding precision uncertainty is given by Eqs.
(37) and (38) as

Pm = t9,95%Sm = (2.262)(209) = 473 W/rad;

PC = t9,95%SC = (2.262)(4.17) = 9.43 W.

Equation (7.90) of BHMT relates the burnout heat load to
the angle of inclination as

Q̇max =
(
ρ�σhfg
µ�

)(
Awκ
Leff

)(
2
rp
− ρ�gLeff sinθ

σ

)
.

The wick cross-sectional area Aw is 4.7× 10−5 m2, and
the effective length of the heat pipe is Leff = 1.40 m. Am-
monia properties evaluated at 22 °C are

ρ� = 609 kg/m3, σ = 21× 10−3N/m,
µ� = 1.38× 10−4 kg/m s, hfg = 1.179× 106 J/kg.

Substituting to obtain Q̇max with sinθ � θ for θ small gives

Q̇max = 3.67× 106κ
(

2
rp
− 3.98× 105θ

)
W

where κ[m2] is the wick permeability and rp[m] is the
average pore radius in the wick. Thus, Q̇max = 0 when

2
rp
= 3.98× 105θ

(
Q̇max = 0

)
and Y = 0 when x = θ = 147/5061 = 2.905 × 10−2 rad.
Hence,

2
rp

= (3.98× 105)(2.905× 10−2)

rp = 1.73× 10−4 = 0.173 mm.

Also, the slope of Q̇max versus θ line is m = (3.67 ×
106κ)(−3.98 × 105) = −1.46 × 1012κ and from the data
curve fit, m = −5061. Hence the permeability is

κ = 5061
1.46× 1012

= 3.47× 10−9 m2.

What then are the precision uncertainties in κ and rp?
The answer for κ is straightforward; since

m = −1.46× 1012κ
κ = −6.85× 10−13m2.

For Pm = 473 W/rad,

Pκ = 6.85× 10−13Pm = (6.85× 10−13)(473)
= 3.24× 10−10m2(9.4%).

On the other hand,

rp = −5.03× 10−6m/C

so Prp depends on both Pm and PC . The exact calculation
of Prp proves to be a difficult problem in statistical analy-
sis and is beyond the scope of this manual. However it is
of the order of 10%.

12 Inferences

In § 10 and § 11 we have developed useful theory for sam-
ples and curve-fitting with normal data distributions. In
fields such as the life sciences, medicine, education, soci-
ology and production engineering, the general objective of
statistical analysis is to infer information about the parent
population from a limited sample of data. Many textbooks
are available that present the methodology of statistical
inference, but these texts focus on the needs of the above
mentioned fields for which statistical inference is of criti-
cal importance. The needs of engineering experimentation
are usually somewhat different, and the selection of mate-
rial in § 10 and § 11 recognizes this situation.

In engineering experimentation our concern with
statistics is usually only to be able to specify an appropri-
ate precision uncertainty in a result, most often the mean
of a sample, or a curve fit. Equations (32) and (34) are the
key formulas. We are seldom concerned with parent pop-
ulations in the sense considered by statistics texts. The
situations encountered in engineering experimentation are
varied: examples are given below for curve fitting, though
similar examples could be given for sample means.

(i) Our linear curve fit is simply a representation (corre-
lation) of data and we wish to specify an uncertainty
of the curve-fit, that is, the confidence interval. Then
all we are saying is that if we were to repeat the exper-
iment we would be C% confident that the new curve-
fit would lie within the confidence interval.

(ii) We may wish to compare our result to the predic-
tion of a theoretical model. Then, if the theoretical
prediction lies within the confidence interval, we can
say that we are C% confident that the theory is valid
for this situation.

(iii) We may have a theoretical model result with un-
known parameters that we wish to infer (estimate)
from our curve fit, that is, from the slope m and
intercept C . Then we find use for the precision un-
certainties of the slope and intercept given by Eqs.
(37) and (38) (see Example 20).

(iv) There may be a set of data obtained in another lab-
oratory for an allegedly similar situation. We then
would ask whether the two situations are identical
at a C% level of uncertainty.

(v) There may be an existing correlation of experimental
data based on one or more sources. Can we say that
we are C% confident that our data is consistent with
the correlation? Such a task is usually impractical
since seldom are the statistical data available for the
existing correlation. The best we can usually do then
is to treat the existing correlation like a theoretical
model and proceed as in case (ii).

Only case (iv) is of the type of problem dealt with in
most statistics textbooks. Of course, there is always the is-
sue that there also are bias errors in our experiments, and
that those errors are usually dominant. Following Rule 1
of §2, it is often sufficient to simply calculate the standard
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deviation of a sample or standard error of a curve-fit and
immediately conclude that precision errors are small and
should be ignored.

13 Combining Bias and Precision Uncer-
tainties

In this manual we have attempted to describe the vari-
ous kinds of errors that occur in engineering experiments.
When precision errors are significant we have shown how
to use appropriate statistical theory to estimate precision
uncertainties. We have described the nature of bias errors,
and illustrated their occurrence in real laboratory experi-
ments in various examples. In the case studies of §15 many
further occurrences of bias errors in real experiments will
be discussed. In the preceding sections of this manual the
student has been given material that should facilitate an
evaluation and rational discussion of possible uncertain-
ties in their experimental data. In many situations no more
can or should be done. Recently, however, there has been a
move by research journals and standards organizations to
require use of empirical rules for combining precision and
bias uncertainties to give a single total uncertainty. In or-
der to discuss and critique such rules, the guidelines given
by the Journal of Heat Transfer of the American Society of
Mechanical Engineers are reproduced below, as taken from
the May 2000 issue of the journal.

An uncertainty analysis of experimental measurements is
necessary for the results to be used to their fullest value. Authors
submitting papers for publication to the Journal of Heat Transfer
are required to describe the uncertainties in their experimental
measurements and in the results calculated from those measure-
ments. The Journal suggests that all uncertainty evaluation be
performed in accordance with a 95% confidence interval. If esti-
mates are made at a confidence level other than 95%, adequate
explanation of the techniques and rationalization for the choice
of confidence interval should be provided.

For each result presented, the presentation of the experimen-
tal data should include the following information:

1. The precision limit, P. The ±P interval about a nomi-
nal result (single or averaged) is the experimenter’s 95%
confidence estimate of the band within which the mean of
many such results would fall, if the experiment were re-
peated many times under the same conditions using the
same equipment. Thus, the precision limit is an estimate
of the lack of repeatability caused by random errors and
unsteadiness.

2. The bias limit, B. The bias limit is an estimate of the mag-
nitude of the fixed, constant error. It is assigned with the
understanding that the experimenter is 95% confident that
the true value of the bias error, if known, would be less
than |B|.

3. The uncertainty, U . The interval about the nominal result
is the band within which the experimenter is 95% confident
that the true value of the result lies. The 95% confidence
uncertainty is calculated from

U =
[
B2 + P2

]1/2
. (43)

4. A brief description of, or reference to, the methods used
for the uncertainty analysis.

The estimates of precision limits and bias limits should be
made over a representative time interval for the experiment. The
following additional information should be presented preferably
in tabular form.

(a) The precision and bias limits for each variable and param-
eter used.

(b) The equations by which each result was calculated.

(c) A statement comparing the observed scatter in results on
repeated trials (if performed) with the expected scatter
(±P) based on the uncertainty analysis.

A discussion of sources of experimental error in the body of the
text without the above does not satisfy our requirement. All re-
ported data must show uncertainty estimates. All figures report-
ing new data should show uncertainty estimates of those data
either on the figure itself or in the caption. A list of references
on the topic is provided below.

Each of the four items in the guidelines will be dis-
cussed in turn.
Item 1. The term “precision limit” is similar to our term
“precision uncertainty” for a sample mean, and “confi-
dence interval” for a curve fit.
Item 2. The term “bias limit” is loosely equivalent to our
term “bias uncertainty.” Whereas we chose to simply esti-
mate a “reasonable upper bound” to the bias uncertainty,
these guidelines suggest that statistical concepts can be
applied to yield a 95% confidence level estimate. But bias
errors are not governed by the laws of statistics, so that
such an approach is without physical basis. Indeed, this
dilemma has been recognized by some organizations, e.g.
the International Organization for Standardization (ISO),
in using the term “coverage” rather than “confidence” in
dealing with bias errors. That is, the bias limit gives a 95%
coverage of the true value of the bias error. But changing
the terminology does not really solve the problem of how
to actually estimate a 95% coverage. In some cases one can
see merit in this approach. For example, consider the very
common situation of a sensor with a linear response and
a scale factor K. If many sensors are produced, the man-
ufacturer will not calibrate each sensor. Instead, a sample
will be calibrated and the mean value given as the nomi-
nal value of K, and the 95% confidence level estimate of
uncertainty given as the accuracy. Usual calibration proce-
dures are relatively precise, and hence this accuracy can be
taken as due to a bias error—each sensor is different. So
in this case we have a bias uncertainty estimated by statis-
tical methods: nevertheless, we must remember that it is a
bias error and does not change from test to test when us-
ing the sensor. Most often, however, we have such a poor
understanding of the possible bias errors that to talk about
a 95% coverage is meaningless: we simply do our best to
quantify the possible error and often our estimate is little
more than a guess.
Item 3. If the bias uncertainty truly had a Gaussian distri-
bution, then this combining rule would be valid: it is the
same as the rule for combining precision errors given by
Eq. (17). But bias errors, by definition, do not have a Gaus-
sian distribution and so the rule has very little meaning.
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Example 24 that follows shows how the rule can lead to
absurd results. Surely, a statement of the precision uncer-
tainty and an evaluation and discussion of possible bias
errors are of more use than a single, possibly meaningless
number.
Item 4. Reference to “time interval” is puzzling. Most of-
ten errors are relatively larger at extreme values of some of
the parameters. It may be important to focus on such sit-
uations, rather than “representative” conditions for which
errors may have a minor consequence. In reference to item
4(a), our Rule 1 of §2 is surely preferable. Why give details
of errors that have negligible impact on the experiment?
Item 4(c) violates our Rule 3 of §2. If repeated trials are
performed (as is usually the case) or if least squares curve-
fits are obtained, the observed scatter is our best source of
information for precision errors. If an uncertainty analysis
gave a different result it would have to be rejected, or “fine
tuned” (fudged) to give the same result. The requirements
that all figures reporting new data should show uncertainty
estimates of those data is particularly disturbing. In §5 we
showed the importance of precision uncertainty of a sam-
ple mean, and the confidence interval of a regression line.
Very few published papers present this information.

General Comments

1. Implicit in Item 2 is that if there is more than one bias
error, these errors should be combined by assuming
that they all have Gaussian distributions, then

B =
(
B2

1 + B2
2 + · · ·

)1/2
. (44)

Again, this practice has no physical basis and can
give absurd results. At best it can simply give an in-
dication of the magnitude of the bias uncertainty. In
reality with a number of sources of bias error, the
true total bias error could be as large as the arith-
metic sum of the individual bias errors, and as small
as zero if the errors fortuitously cancel. A single
number given by Eq. (44) does not allow the user to
be aware of such possibilities.

2. If it were relatively simple and quick to follow the
guidelines, one could argue pragmatically that it
should just be done so that the information is avail-
able to interested parties. But, for the usual exper-
iment, a careful and intellectually honest following
of all the requirements of the guidelines requires an
enormous amount of work, with many difficult deci-
sions to be made. As a result, one seldom sees ev-
idence of a faithful compliance with the guidelines:
usually it is obvious that there has been only lip ser-
vice to the requirements. In the few cases we have
seen where such guidelines have been faithfully fol-
lowed, a careful examination of the details simply
demonstrated the futility of the approach. Why ex-
pend great effort to estimate small bias errors when
the combining rule has no physical basis? Also, the
question arises as to who are the interested parties?

Editors of journals are unlikely to ever use the re-
sults of a paper published in a journal. The inter-
ested practicing engineer or research worker is more
likely to be interested in (a) the precision uncertainty
of the mean (or equivalent), and (b) an intelligent dis-
cussion of possible bias errors and their magnitudes.
Then they can decide how to use this information for
their own specific purposes, which can be quite var-
ied.

Example 19. Errors in a Flow Rate Measurement.

Let us revisit Example 3, which dealt with flow rate mea-
surement using a laboratory burette. It was shown that
there was a bias error due to the presence of a liquid film on
the burette inside wall. Using a laminar film model it was
estimated that the resulting bias error was Bx ≈ 0.093 ml
for the flow rate considered. Let us decide to not make a
correction for this bias error. Now suppose that the ex-
pected precision uncertainty due to difficulty in reading
the scale is Px = 0.02 ml. Then, following the combining
rule given by Eq. (43), the total expected error in the flow
measurement is

Ux = ±
(
B2
x + P2

x

)1/2 = ±
(
0.12 + 0.022

)1/2 = ±0.102 ml.

But clearly the expected total error is rather

Ux = +0.1± 0.02 ml.

In particular, Ux can never be less than +0.08 ml. To sug-
gest that Ux could be –0.12 ml is absurd.

Comments: The bias errors that we are most often con-
cerned with are one-sided (biased!). Thus, use of Eq. (44)
can be very misleading.

14 Sampling Time Dependent Data

Examples 6 and 15 dealt with a boiling heat transfer exper-
iment in which the temperature–time response was mea-
sured for a copper sphere suddenly immersed in a pool
of liquid nitrogen. In principle the resulting data for T(t)
can be subjected to an error analysis using the methods
described in previous sections of this manual. However,
there are special features of this type of problem that are
worthwhile considering in greater detail. Some time ago,
time dependent data was recorded by using “strip-chart”
recorders in which the sensor output was recorded by a
pen on a moving chart. But nowadays we almost always
use a computer-based data acquisition system in which the
sensor analog output is recorded at discrete intervals in
digital form: the frequency of sampling the analog output
is then a parameter that must be chosen by the exper-
imentor. In Fig. 24 an analog signal is sampled at two
different frequencies (rates). Fig. 24(a) shows a situation
where the sampling frequency is too low. Because of un-
dersampling, the peaks and valleys are not well resolved by
the discrete sampled values. When the sampling frequency
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is increased, Fig. 24(b) shows that the signal resolution can

(a)

(b)

Figure 24 An analog signal sampled at two different rates: (a)
Low sampling frequency; (b) High sampling frequency.

be greatly improved. In the situation shown in Fig. 24,
it seems obvious that the experimentor must choose a
sampling rate high enough to resolve the features of the
data that are of interest. Fortunately, even relatively in-
expensive modern data acquisition systems can provide
sampling frequencies up to 100 Hz (100 samples per sec-
ond). But there is a complicating factor: the analog to dig-
ital signal conversion introduces a precision error (noise)
into the digital data. As mentioned in Example 15, the
A/D converter replaces the continuous voltage signal by
a sequence of discrete values. For example, an 8-bit A/D
converter can record 28 = 256 voltage levels. If it is to
have a range of 10 mV, then its least count is necessarily
10/256 = 0.04 mV, which gives a precision error of this
order in the digital data. At lower sampling rates the least
count can be obtained as shown above. However, some
data acquisition systems need to change their mode of op-
eration at higher sampling rates, and a larger least count
can result.

If only the actual data values are of concern, and the
least count remains constant, increasing the sampling rate
will improve the resolution of the signal. However, there
can be complications when the signal is further processed,
for example, when it has to be differentiated as a key step
in the data reduction procedure. Example 20 illustrates
this issue.

Since the quantization noise is random in nature, it can
be reduced by a process known as filtering. A simple fil-
tering scheme consists of replacing the data sequence by
a “moving average.” For example, three point averaging
replaces the 1st, 2nd and 3rd points by their average, the
2nd, 3rd and 4th points by their average, and so on, as

shown in Fig. 25. This data smoothing process reduces the
noise, but must be used carefully because it can distort the
true variation of the signal, for example, in the vicinity of a
local maximum or minimum. Consider a sequence of data
1, 2, 9, 4, 2, 3. The maximum value is 9± the precision
error. Now apply a 3 point moving average to generate a
new sequence: (1+ 2+ 9)/3 = 4, (2+ 9+ 4) = 5, etc. The
new sequence is 4,5,5,3 with a maximum of only 5 (± a
reduced precision error).

Figure 25 A simple filtering scheme: use of a moving average.

Example 20. Resolution of Boiling Peak Heat Flux.

In Example 15, the precision error introduced into q(t) by
the A/D conversion was analyzed by propagating the er-
ror in T through the central difference formula used to
calculate q. Denoting the precision error in T by PT , the
precision error in q was obtained as

Pq = C
2∆t

[
P2
Tn+1

+ P2
Tn−1

]1/2

where C = ρcD/6 and ∆t = 1/f where f is the sampling
frequency. In Example 15, this equation was used to pre-
dict noise in the film boiling regime. Here we will look
into the determination of the peak heat flux (for which
data were given in Example 5). For ρ = 8930 kg/m3,
c = 250 J/kg K, D = 1.27 × 10−2 m, C = 4730 J/m2K. Also
qmax = 133,000 W/m2. Thus, taking PT to the least count
of the data acquisition system, which at a 50 hz sampling
rate was 0.025 K,

Pq
q

= 0.0178
∆t

(
0.0252 + 0.0252

)1/2

= 6.25× 10−4

∆t
.

For ∆t = 0.02 s,

Pq
q

= 3.15× 10−2 ∼ 3%

Pq = 3.15× 10−2 × 133,000 = 4190 W/m2.
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If the sampling rate were 10 Hz, then ∆t = 0.1 s and

Pq
q

= 6.29× 10−5 ∼ 0.6%

Pq = 6.29× 10−3 × 133,000 = 840 W/m2.

Now let us consider a simple laboratory setup of this
boiling heat transfer experiment. For convenience it was
decided to process the data in real time, that is, dT/dt and
q(t) were calculated as T(t) was recorded and displayed.
Then the boiling curve q(T −Tsat) was displayed. As q was
calculated the highest value was retained and displayed as
qmax with the boiling curve. The table below shows some
typical results for 8 sample averages.

∆t qmax

s W/m2 × 10−5

0.3 1.18

0.1 1.44

0.05 1.53

0.02 1.67

At first sight one may be one may be tempted to assert
that a very small ∆t is required to “capture” qmax. But this
is not true because qmax obtained in this manner is qmax

plus the maximum noise: the values in the table are really
meaningless. The increase in qmax at smaller values of ∆t
is due to the increase in precision error. Figure 26 shows
a set of q(T −Tsat) data in the vicinity of qmax. The proper
way to obtain qmax from the data is to least squares curve
fit the data near qmax

Comments. Note that the table does show that ∆t = 0.3 s
is not small enough to capture qmax
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Figure 26 A boiling curve for a sphere in liquid nitrogen.
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15 Case Studies

Case Study No 1. Stagnation Line Convective Heat
Transfer.

Laminar boundary layer theory is expected to yield a reli-
able estimate of convective heat transfer at the stagnation
line of a smooth circular cylinder in a cross-flow of air. The
results of numerical solutions can be correlated as

NuD = 1.141Re0.5
D Pr0.4, Pr ≈ 1.

This equation is a useful benchmark for evaluating exper-
imental methods used to measure local convective heat
transfer coefficients. In this case study we describe two
methods that were evaluated in this manner.

Figure 27 Test cylinder of method 1.

Method 1

This method is based on uniformly heating the cylinder
surface and extracting the heat transfer coefficients from
the power input to the heater and measured surface and
free-stream air temperatures. The test cylinder is shown
in Fig. 27. It is 10 cm long, has an outside diameter of
31.85 mm, and consists of 4.81 mm wall thickness, phe-
nolic bonded linen tube, around which is wound a stain-
less steel heater ribbon 0.0254 mm thick, 12.7 mm wide
and 607 mm long. The resistance of the ribbon is approxi-
mately 1Ω. The power input to the heater is controlled by
a Variac and measured with a wattmeter. Due to the rela-
tively poor peripheral conductance of the composite tube,
we can safely assume a uniform heat flux heating in the
stagnation region. A 30 gage chromel–alumel thermocou-
ple is located midway across the cylinder just underneath
the heater ribbon. A second thermocouple is similarly in-
stalled at a displacement of 180 degrees. A third thermo-
couple measures the free-stream temperature. A digital
thermometer provides temperature readouts for the three
thermocouples. The cylinder can be rotated to obtain the
temperature distribution around the cylinder, and to have
either thermocouple at the forward stagnation line. The
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wind-tunnel cross-section is 10 cm wide and 40 cm high.
The air speed is measured using a pitot tube and an in-
clined manometer. The test rig was designed to be rela-
tively simple and robust for use in an undergraduate me-
chanical engineering laboratory course. Accuracy data for
the instrumentation are as follows.

1. Thermocouples/Digital thermometer. Calibration in
a constant temperature bath indicated bias errors
that were typically 0.1 K, and never exceeded 0.2 K.
Temperature fluctuations were negligible so that the
precision errors are no greater than the least count
of the digital readout, which is 0.1 K.

2. Air Speed. The inclined manometer can be read to
0.005 inches of water which corresponds to 2% and
0.25% of the scale reading at the low and high ends
of the range, respectively. Since air speed is pro-
portional to the square root of manometer height,
the associated precision error in the air speed is no
greater than 1% and 0.1% respectively. Bias errors
for the manometer are negligible.

3. Power Input. The least count of the wattmeter were
of the order of 0.1% of scale readings and fluctua-
tions were negligible. Thus precision errors in the
power measurements were negligible, and bias er-
rors in the meters are expected to be less than 0.5%,
which is also negligible.
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Figure 28 Comparison of stagnation line Nusselt numbers
with the theoretical values using method 1.

Results

The local heat transfer coefficient was calculated from

hc = P/A
Ts − TC

where P is the power input to the heater and A is the area
of heater ribbon (7701 mm2). Air properties were evalu-
ated at the mean film temperature to calculate the Nusselt
and Reynolds numbers. Sample test data are shown in Ta-
ble 8 and Fig. 28. The two sets of data for thermocouple
A were obtained by first decreasing the tunnel speed and
then increasing it back to the maximum. Examination of
the result shows two important features.

(i) The precision of the calculated Nusselt numbers is
very good—the precision uncertainty is about 1%.

(ii) There is an obvious systematic difference between
the results obtained with the two thermocouples.

Table 8 Stagnation line Nusselt numbers obtained using
Method 1.

Thermo- NuD NuD %

couple ReD (theory) (exp.) difference

A 56,100 233.0 253.4 8.8

A 50,600 221.3 241.4 9.1

A 43,900 206.1 225.5 9.4

A 35,700 185.8 202.5 9.2

A 25,300 156.5 169.5 8.3

A 35,800 186.1 204.0 9.6

A 43,700 205.6 224.8 9.3

A 50,400 220.8 242.0 9.6

A 55,900 232.6 253.3 8.9

B 56,600 234.0 241.7 3.3

B 50,700 221.5 228.2 3.0

B 43,800 205.9 217.0 5.4

B 35,800 186.1 194.8 4.7

B 25,800 158.0 163.3 3.4

Thus, before proceeding further, we can state that pre-
cision errors are not an issue in this experiment; the im-
portant issue is the bias error in one or both of the surface
temperature measurements.

To illuminate this bias error, some information on the
history of the test rig is pertinent. The test cylinder used in
the experiment was the fourth cylinder that has been built
and tested over a period of twelve years. The first cylinder
had only one thermocouple installation, and when checked
out gave excellent agreement with theory for stagnation-
line heat transfer. After successful use by many groups
of students over a number of years it was damaged by
inadvertent overheating. The second cylinder was essen-
tially identical to the first but, when checked out, there was
a significant discrepancy between theory and experiment.
After reinstalling the surface thermocouple, the check-out
yielded excellent agreement once again. Thus we learned
that special care had to be taken to ensure good thermal
contact between the thermocouple junction and the under-
surface of the heater ribbon. After a few years, cylinder
No. 2 started to give poor results, which was attributed
to deterioration in the thermocouple installation due to
differential expansion over many heating and cooling cy-
cles. Based on this experience, subsequent test cylinders
were built with a second surface thermocouple installation
to increase the likelihood of having a satisfactory installa-
tion, and also to demonstrate the value of redundancy in
helping to identify bias errors. Thus it is reasonable to
conclude that both thermocouples give biased results due
to unsatisfactory installation.
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Figure 29 Test cylinder of method 2.

Method 2

This method uses a thin film heat flux sensor bonded to
a thick wall copper test cylinder containing an electric
heater. The heat transfer coefficient is calculated from the
measured heat flux, and surface and free-stream temper-
atures. The test cylinder is shown in Fig. 29. It has a
35.3 mm outside diameter and 2.75 mm wall thickness.
It spans a 20 cm wide, 55 cm high wind-tunnel, and the
15.2 cm long midsection is heated by a heater tape at-
tached on its inner surface. A cross-section of the heat
flux meter is also shown in Fig. 29. The sensor is 6.35 mm
wide, 15.9 mm long, and approximately 0.1 mm thick, and
is bonded to the test cylinder using a contact adhesive.
The two thermopiles are located on each side of a 1 mil-
thick Kapton film in order to measure the temperature
difference across the film. A separate type T thermocou-
ple measures the temperature underneath the film. The
manufacturer calibrates the meter by comparing its out-
put to a master sensor, and a calibration constant (in µV
thermopile output per unit heat flux) is supplied with the
meter. Upstream of the test section is a 4 to 1 area con-
traction. Pressure taps are located at the ends of the con-
traction, and the pressure differential to determine the air
velocity. An OMEGA PX160 series pressure transducer is
used for this purpose. Data acquisition is performed by a
Strawberry Tree connection Mini-16 system and the data
fed to a PC for display. For convenience, pertinent calcu-
lated data are displayed in real time including the Reynolds

and Nusselt numbers and the theoretical stagnation-line
Nusselt number.

Typical test data is shown in Fig. 30. A significant dis-
crepancy between the experimental stagnation-line Nusselt
number and theory was obtained. The measured value is
from 8 to 15% too high over the Reynolds number range.
The precision of the data is very good: clearly the only
issue is an apparent bias error in the measured value. No-
tice that the bias errors associated with faulty thermocou-
ple installations with Method 1 were never as large as the
bias error seen here. Since the wind-tunnel and instru-
mentation differed to that used with Method 1, all possi-
ble sources of error were carefully examined. The velocity
profile in the tunnel was checked using a Pitot tube tra-
verse, leading to a high level of confidence in the measured
Reynolds numbers. All computer performed calculations
were checked by hand. Thermocouples were calibrated.
Finally the test cylinder was located in a much larger wind-
tunnel with mostly different instrumentation, yielding no
significant change in the test results. Thus the conclusion
was reached that the heat flux meter calibration was inac-
curate.

The manufacturer supplied calibration constant was
0.350µV/(Btu/hr ft2), with no accuracy specified. Con-
tacts with the manufacturer were rather frustrating. It was
difficult to locate an employee who understood that an ac-
curacy should be specified, and we were not able to obtain
such information. One input we received was that our op-
erating heat fluxes were lower than those normally used
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and could be affected by an offset error: but no quantita-
tive information was obtained. We decided to replace the
heat flux meter with one of the same model, which had
a calibration constant of 0.408µV/(Btu/hr ft2). Figure 31
shows the new test data for which the measured value is
now from 2.9% to 5.7% too low over the Reynolds number
range tested. Since the method of installation of the sensor
and the test rig and instrumentation were identical to that
used with the first sensor, we concluded that the manufac-
turer calibration constants were unreliable. Subsequently
we noted in the literature a similar complaint concerning
the same manufacturer’s sensors [1].

Figure 30 Comparison of stagnation line Nusselt numbers
with theory using method 2: first heat flux meter.
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Figure 31 Comparison of stagnation line Nusselt numbers
with theory using method 2: second heat flux meter.

To investigate the possible effect of heat flux on sensor
accuracy we conducted a series of tests in which the tem-
perature difference (Ts −Te) was varied from 10 K to 30 K.
In order to prevent falsification of these tests by variable
fluid property effects, the data was processed according
to the recommendation of Kays and Crawford [2]. In this
scheme all properties are evaluated at the free-stream tem-
perature with a subsequent temperature ratio correction of
applied to the Nusselt number. The results are shown in
the Table 9.

Table 9 Nusselt number variation with surface heating.

ReD Ts − Te Nuth Nuexp % error

25,190 10.8 156.7 145.6 −7.1
25,190 21.0 157.2 149.6 −4.8
25,190 30.8 157.7 154.5 −2.1
31,100 10.1 174.0 159.3 −8.4
31,100 20.4 174.6 165.2 −5.4
31,100 30.7 175.2 168.8 −3.7
40,490 9.5 198.5 179.1 −9.8
40,490 20.1 199.2 187.3 −6.0
40,490 28.2 199.7 189.7 −5.0

In this table the constant property theoretical Nusselt
number is multiplied by (Ts/Te)0.1 to give Nuth and Nuexp

is evaluated using free stream properties. Table 9 shows
that the accuracy of the experimental results does indeed
improve with increasing heat flux, suggesting a zero offset
error in the heat flux meter. If this is the case it should
be the responsibility of the manufacturer to specify this
zero offset error, or at least specify a minimum heat flux
for which the calibration constant is guaranteed some tol-
erance.

References

[1] Scholten, J.W. and D.B. Murray, Heat transfer in
the separation and wake regions of a gas–particle
flow, Proc. 10th International Heat Transfer Confer-
ence,Brighton, England, 2, 375–380 (1994).

[2] Kays, W.M. and M.E. Crawford, Convective Heat and
Mass Transfer, 3rd ed. McGraw-Hill, New York, 1993.

Case Study No 2. Friction Factor for Flow in a
Smooth Tube.

A popular undergraduate laboratory experiment is the
measurement of pressure drop for flow of water in a long
tube. By varying the flow rate, data are obtained for fric-
tion factor as a function of Reynolds number, which can
be compared with established correlations or the Moody
chart. One such test rig has a flow loop consisting of a
high pressure pump, turbine flow meter, control valves
to allow one of three different diameter copper tubes to
be selected, and a return tank. The pressure differential
is measured with a silicon piezoresistive pressure trans-
ducer. Type K thermocouples are attached to the walls of
the test tubes. The output from the pressure transducer
and thermocouples is fed to a data acquisition system con-
nected to a PC. The specifications of the flowmeter and
pressure transducer are described in detail in Examples 2
and 5, respectively. Pertinent information about the in-
strumentation is as follows.
Flowmeter: Maximum bias error ±0.5%
Pressure transducer: “Typical” and “maximum” bias errors
due to various sources are arithmetically summed to give
the values in the table below.
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Pressure, kPa 200 100 50 20 10 5

Typical % ± 3.85 3.95 4.15 4.75 5.75 7.75

Maximum % ± 4.25 4.75 5.75 8.75 13.75 23.75

Data acquisition system: Samples data at 5 Hz and dis-
plays 10 sample running averages.
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Figure 32 Measured pressure drop versus bulk velocity.
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Figure 33 Comparison of measured friction factor with
Petukhov’s correlation.

The test rig was cleaned and reactivated after a sum-
mer vacation, and checked out by obtaining a data set for
the smallest diameter tube (7.75 mm I.D., 0.673 m between
pressure taps). Plots of pressure drop versus bulk velocity
and friction factor versus Reynolds number are shown as
Figs. 32 and 33, respectively.

The plot of f versus ReD shows an erratic behavior at
low flow rates that can be easily explained. The plot of
∆P shows that ∆P is less than 5 kPa for the first five data
points, and the deviations in f are in line with the possible
bias errors given in the pressure transducer specifications.
If data is required for ReD < 2× 104 (∆P < 10 kPa), a pres-
sure transducer with a much smaller full scale span should
be used.

Let us discard the data for ReD < 2× 104 and examine
the remaining data. Some precision error is in evidence.
Observation of the computer screen showed fluctuations
of ±0.5 kPa in ∆P . At 13 kPa this is ±4%, which can explain
the observed scatter. Further filtering of the data should
reduce this precision error. However, the important fea-
ture of the results is an apparent bias error: the experi-
mental f values are too high. For example, the discrepancy
at ReD � 7 × 104 is 11%. Since smaller discrepancies had
been noted in previous years, it was concluded that some

problem had developed causing a systematic error. For-
tunately the remedy was fairly simple. By inspecting the
system it was found that there was significant residual de-
tergent in water: the system was flushed thoroughly and
the table and Fig. 34 shows new results.

Temp. ∆P Flowrate ReD f fPetukhov Deviation

K kPa ×104 ×104 %

294.3 72.2 4.30 7.08 0.0200 0.0194 3.1

294.4 64.1 4.00 6.61 0.0205 0.0197 4.2

294.5 55.8 3.72 6.16 0.0207 0.0200 3.5

294.6 55.9 3.72 6.16 0.0207 0.0200 3.5

294.6 45.0 3.31 5.50 0.0210 0.0205 2.4

294.8 38.1 3.03 5.04 0.0213 0.0209 1.8

294.9 29.9 2.60 4.35 0.0226 0.0216 4.4

295.0 23.7 2.31 3.86 0.0229 0.0223 2.7

295.1 16.6 1.90 3.19 0.0236 0.0233 1.3

295.1 9.8 1.40 2.35 0.0257 0.0251 2.4

Petukhov’s formula for friction factor is

f = (0.790 ln ReD − 1.64)−2; 104 < ReD < 5× 106

and gives values essentially identical to those given by the
Moody chart in this Reynolds number range. The devia-
tions are now in the range 1.3–4.4%. The scatter indicates
a precision uncertainty of the order of ±2% which is very
small. Referring to the table of specified bias errors for the
pressure drop sensor we see that the deviations in f are
less than the “typical” bias error for the sensor. Clearly,
there is little more that can be said about errors in these
results. For routine engineering purposes the accuracy of
the data is certainly adequate. If more accurate data are
required, a more accurate pressure sensor must be used.
The pressure transducer used here is relatively inexpen-
sive (∼ $30): more accurate sensors are widely available
but are considerably more expensive.
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Figure 34 Measured friction factor after eliminating a source
of systematic error.

Case Study No 3. Natural Convection in a Circular
Cavity.

There have been many experimental studies of heat trans-
fer across horizontal and inclined fluid layers of square or
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rectangular cross-sections; corresponding data for a circu-
lar cross-section do not appear in the literature. For a hor-
izontal layer the shape of the cross-section should have
little effect, but for inclined layers a more significant ef-
fect may be expected. An undergraduate laboratory test
rig was developed to study heat transfer across a circular
layer, partly because it was simpler to construct than a rig
for a rectangular layer. For convenience it was decided to
use only one test fluid, namely water, and obtain a large
range of Rayleigh numbers by varying the thickness of the
water layer. A section through the test cell is shown in
Fig. 35; the lower plate assembly is fixed and the upper
assembly is moved by a screw drive. Sealing of the plates
in the container tube is by O-rings. Each plate assembly
has a hard rubber layer sandwiched between two copper
plates, to serve as heat flux meters. Five 30 gage type-T
thermocouples are located on each side of the rubber lay-
ers to form the heat flux meters. One plate is heated by hot
water from an electrically heated supply; the other plate is
cooled by chilled glycol-water coolant. Typically the hot
plate is maintained at 45–50 °C and the cold plate at 0–
5 °C so that the test liquid is at approximately the ambient
temperature of 22 °C. The thermocouples are connected to
an ACRO data acquisition system and the digital output
transmitted to a PC for display. Pertinent specifications of
the instrumentation are as follows.

Figure 35 Natural convection cell.

Thermocouples: A bias error of no greater than 0.2 K, pos-
sibly no greater than 0.1 K.

Data acquisition unit: Samples at 10 Hz, averages over 2 s,
and averages each set of four thermocouples. Dis-
plays to 0.1 K which is taken to be the precision error
in the temperatures.

Dial-gage: A bias error due to uncertainty in zero reading
of 0.1 mm (depends on torque applied to screw to
completely close the gap). Least count 0.01 mm.

Heat flux meters: No specification since these are cali-
brated as part of the experiment procedure.

Figure 36 Thermal circuit of the natural convection test cell
(1/hcA = L/kA for calibration).

Heat flux meter calibration. The thermal conductivity
and thickness of the rubber layer are not known accurately
enough to specify the thermal resistance of the heat flux
meters. Calibration is required and is accomplished by
rotating the test cell to 180°, for which the cold plate is
underneath the hot plate. Then the liquid layer is stable,
there is no convection, and heat transfer across the layer
is by conduction. Since the thickness of the layer and the
thermal conductivity of water are accurately known, the
heat flow in the equivalent circuit shown in Fig. 36 can be
calculated and used to determine the thermal resistances
of the heat flux meters. In principle, calibration at one
thickness of water layer should suffice: the meter thermal
resistances should be constants. However, calibration at
different plate spacings yields a systematic variation with
plate spacing, as shown in Fig. 37. The observed precision
errors are relatively small and are mainly due to the time
required for the system to reach steady state. When more
time is allocated to the calibration process, the precision
improves.

How should the variation in R1 and R2 be viewed? Is
this variation a characteristic of the system such that the
same variation is obtained in convection experiments with
the system inverted? If so, the graphs of R1 and R2 can
be used to determine appropriate values for the spacings
used in the convection tests. Or should we view the varia-
tion as a bias error and simply use the average values of R1

and R2? The maximum error in so doing would probably
be about 5%. But we should not be speculating like this: we
should attempt to determine why R1 and R2 vary. Some of
the hypotheses that have been advanced are as follows.

T
h

er
m

al
 r

es
is

ta
n

ce
, R

(K
/W

)

Plate spacing, L(mm)

Hot side rubber
Cold side rubber

0.6

0.5

0.4
0 5 10 15 20 25

R1 = 0.458 L0.0691

R2 = 0.456 L0.0397

Figure 37 Thermal resistance versus plate spacing.

1. There are spurious convection currents. However,
convective effects should increase with plate spacing
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to yield a lower resistance and the opposite trend is
observed. A quantitative estimate is impossible, but
we could perhaps inject some dye to see if the fluid
is stationary.

2. There is heat exchange between the water layer and
the surroundings. Since the average water temper-
ature is kept close to the ambient temperature, the
heat flow will be as shown in Fig. 38. Notice that
although the net heat exchange is zero, there is an
augmentation of the heat flow recorded by the heat
flux meters. For L = 20 mm, h0 = 12 W/m2 K,
kw = 0.5 W/m K, the heat flow is roughly estimated
as

Q̇1 = UA1∆T ; ∆T = 8K; A1 = πD(L/2)
1
U
≈ Łw
kw

+ 1
h0

= 0.0095
0.19

+ 1
12

; U = 7.5 W/m2 K

Q̇ = (7.5)(π)(0.15)(0.01)(8) = 0.28 W.

To explain the variation in R as L goes from 4 to 20
mm we are looking for an augmentation of about
10% in Q̇, that is, (0.1)(15) = 1.6 W. Thus, although
Q̇1 has the correct sign, it is only about 18% of the
value required to explain the increase in R. To fur-
ther investigate this hypothesis the test cell was well
insulated and additional data obtained, as shown in
Fig. 39. The observed effect of the insulation is rela-
tively small.

3. There is a zero-offset bias error in the spacing mea-
surement. A simple calculation shows that a bias
error of about −0.5 mm would explain the variation
in R-values. However, if anything, we could expect
a positive bias error due to distortion of the plates
preventing tight closure—that is, when the dial gage
indicates a plate spacing of 4 mm, the effective layer
thickness is larger.

Use of the graphs of R1 and R2 to obtain appropriate
values for the spacings used in the convection tests has an
appealing logic. However, if heat exchange with the sur-
roundings is the main issue, then this approach is flawed.
At a given plate spacing, the temperature profiles through
the system are very different for calibration versus test-
ing. During calibration the temperature drop across the
water layer is much larger than during testing, because
convection reduces the thermal resistance of the layer. At
the largest plate spacings the Nusselt number hcL/k was
about 10, indicating a temperature drop of 1/10 of that
for pure conduction. Thus the temperature distribution
in the system is quite different for testing versus calibra-
tion at the same layer thickness. To properly account for
heat exchange with the surroundings a thermal model of
the experimental system must be constructed. A simple
model was proposed by Chang and Mills [1] and used with
some success. Figure 40 shows a comparison with other
experimental studies and the agreement is certainly good
enough for engineering purposes. If greater accuracy is de-
sired, then a complete numerical solution of the conduc-
tion equations governing heat flow in system components,

is required. Alternatively, the test cell could be redesigned
to minimize side effects.

Figure 38 Heat flow sketch.
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Figure 39 Comparison of thermal resistances for insulated and
uninsulated test cell.
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Chang and Mills [1]

Figure 40 Nusselt number versus Rayleigh number for
horizontal water layer.
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Case Study No 4. A Two-Stream Coaxial-Tube Heat
Exchanger.

An undergraduate laboratory experiment requires the test-
ing of a coaxial-tube heat exchanger. The unit is 2.50 m
long, and has a 6.38 mm O.D. , 4.52 mm I.D. brass tube
surrounded by a 9.63 mm I.D. glass tube. Recirculated hot
water flows through the inner tube, and cold water from
the laboratory supply flows through the outer tube and is
dumped to a drain. The hot water is heated by electric
heaters that can supply up to 3.5 kW. Flow rates of both
streams are controlled by valves, and the direction of the
cold stream can be reversed to give parallel or counter-
flow operation. Inlet and outlet water temperatures are
measured by chromel–alumel (type-K) thermocouples con-
nected to a digital thermometer. Flow rates of the two
streams are measured by rotometers. Specifications for
the instrumentation are as follows.

Flowmeters: 1. Cold stream. Maximum flow rate
0.231 kg/s. Accuracy = 2% of maximum flow
rate = 4.62 × 10−3 kg/s. Least count = 2.31 ×
10−3 kg/s.

2. Hot stream. Maximum flow rate 0.0976 kg/s.
Accuracy = 2% of maximum flow rate = 1.95×
10−3 kg/s. Least count = 9.76× 10−4 kg/s.

Thermocouples: Calibration together in a constant tem-
perature bath showed deviations no greater than
±0.1 K.

Digital Thermometer: Accuracy = 0.25 °C. Least count =
0.1 ° C

Notice that the calibration of the thermocouples was
done with the digital thermometer: thus the manufacturer
claim of a 0.25 K accuracy is conservative to the point of
being meaningless in the temperature range of the experi-
ment.

Example 14 presents a conventional propagation of
precision error for a single test of the experimental rig.
We now examine a comprehensive set of experimental data
with a view of obtaining further insight into the precision
errors, and, more importantly, to identify possible signifi-
cant bias errors. Table 10 shows the results of a series of
tests in which the capacity rate ratio RC = Cmin/Cmax was
held constant at 0.496 while the flow rates were varied by
more than a factor of 2.

Energy Balance. In Example 14 the data point considered
was found to have a 3.7% discrepancy in the exchanger en-
ergy balance. In comment No. 3 following the example it
was noted that P(Q̇H−Q̇C ) was about the same as (Q̇H−Q̇C),
and hence the discrepancy could perhaps be attributed to
precision errors. However, to reach a proper conclusion
we must examine a set of energy balances and see how
the discrepancy varies. The results for the energy balance
discrepancies are shown plotted against Cmin in Figure 41
(a plot against Cmax would yield a similar result). A trend
of an increasing discrepancy with decreasing Cmin is seen.

Also shown is a least squares curve fit

100(Q̇H − Q̇C)/Q̇H = −0.0361Cmin + 10.29

which has a standard error of 1.03%. From Eq. (12), the
midrange precision uncertainty for a single data point is
PY � 2SY = 2.1%(C = 95%). We can now conclude that
the precision uncertainty in the energy balance is in fact
relatively small, about ±2%. On the other hand, there is a
clear bias error: Q̇H exceeds Q̇C by about 2% to 10%, the
discrepancy increasing as flow rates decreases.

Effectiveness and Number of Transfer Units. Figure 41
also shows the discrepancies between measured and ex-
pected effectiveness and number of transfer units. For
these calculations Q̇ was taken to be Q̇H : use of Q̇C gave
larger discrepancies. Of course, this choice is somewhat
arbitrary. Least square curve-fits and standard errors are

% discrepancy in ε : Y = −0.0396x + 4.756;SY = 0.506%

% discrepancy in Ntu : Y = −0.0817x+9.927;SY = 1.183%

with corresponding precision uncertainties. Since ε and
Ntu are related by the ε − Ntu relation for a counterflow
exchanger, the different values of SY for ε and Ntu reflect
only the fact that dNtu/dε is greater than unity in the Cmin

range tested.
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Figure 41 Errors in energy balance, effectiveness, and Ntu
with variation of flow thermal capacity.

Sources of Bias Error. Figure 41 shows that there are bias
errors in the results for ∆Q̇ of 2% to 8%, and for ε of −4%
to +3%. Now, the first and most important observation to
make is that these errors cannot be considered to be exces-
sive, particularly in view of the relatively simple design of
the rig and the robust, inexpensive, instrumentation. Nev-
ertheless, it is of interest to attempt to identify possible
sources of the bias errors.

Looking first at the flowmeter we recall that the man-
ufacturer claims an accuracy of 2% of the maximum flow
rate. For test No. 10 the resulting possible errors in the hot
and cold flow rates are ±8.5% and ±10.0%, respectively. In
this light, the corresponding error in the energy balance of
7.83% appears to be about what one may expect. Before
proceeding any further to investigate possible sources of
bias errors, the flow meters should be calibrated to, say,
0.5% accuracy. Nevertheless we will continue.
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Table 10 Test data for a counterflow operation at fixed capacity rate ratio; Q̇ = Q̇H .

Test No 1 2 3 4 5 6 7 8 9 10

TH,in(°C) 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2

TH,out(°C) 25.3 25.1 25 25 25 24.9 24.8 24.9 25 24.9

TC,in(°C) 16.1 16 16.1 16.2 16.4 16.5 16.6 16.9 17.3 17.5

TC,out(°C) 23.3 23.3 23.4 23.4 23.6 23.8 23.9 24.2 24.4 24.5

ṁH (kg/s) 0.0541 0.0507 0.0472 0.0438 0.0403 0.0369 0.0334 0.0299 0.0265 0.023

ṁC (kg/s) 0.1089 0.1019 0.095 0.088 0.0811 0.0741 0.0672 0.0602 0.0533 0.0463

Hot, heat loss (W) 3367.2 3195.3 2997.8 2779.3 2558.2 2354.3 2147.6 1913 1680 1471.1

Cold, heat gain (W/K) 3278.5 3111.9 2899.6 2650.6 2441.2 2262.9 2050.7 1838.4 1581.6 1355.9

% difference 2.63 2.61 3.28 4.63 4.57 3.88 4.51 3.9 5.86 7.83

CH (W/K) 226 211.6 197.2 182.8 168.3 153.9 139.5 125 110.5 96.1

CC (W/K) 455.3 426.3 397.2 368.1 339.1 310.0 280.9 251.8 222.8 193.7

RC 0.496 0.496 0.496 0.497 0.496 0.497 0.496 0.496 0.496 0.496

ε, experiment 0.618 0.624 0.631 0.633 0.639 0.646 0.653 0.657 0.664 0.674

ε, expected 0.642 0.645 0.648 0.651 0.654 0.657 0.66 0.662 0.665 0.665

% difference −3.77 −3.26 −2.65 −2.68 −2.37 −1.75 −1.07 −0.88 −0.16 1.36

Ntu, experiment 1.184 1.206 1.232 1.243 1.264 1.293 1.322 1.339 1.37 1.417

Ntu, expected 1.28 1.29 1.302 1.314 1.329 1.341 1.352 1.365 1.375 1.376

% difference −7.45 −6.5 −5.36 −5.44 −4.86 −3.63 −2.25 −1.86 −0.35 2.97

UA(Ntu) (W/K) 267.6 255.2 243.0 227.2 212.7 199.0 184.4 167.4 151.4 136.2

UA(∆T�m) (W/K) 266.0 253.6 241.1 224.6 210.3 196.8 182.2 165.7 149.1 133.3

% difference 0.6 0.6 0.8 1.1 1.2 1.1 1.2 1.0 1.5 3.8

In discussing the discrepancies in the energy balance,
the first cause students suggest is that the cold stream is
losing heat to the surroundings. However, the average tem-
perature of the cold stream is 20–21 °C, which is typically
the ambient temperature. Thus a net loss to the surround-
ing is unlikely. Some days the average cold stream tem-
perature is above the ambient temperature and a numeri-
cal estimate of heat loss is made. For an extreme case, an
average ∆T of 5 K is used, with an outside convective plus
radiative heat transfer coefficient of 10 W/m2 K. Then for
an outer wall thickness of 1 mm and thermal conductivity
of 1.4 W/m K, and a negligible inside convective resistance,
the overall heat transfer coefficient is approximately

1
U
� 0.001

1.4
+ 1

10
; U = 9.9 W/m2 K.

The heat loss from the outside of the outer tube of area
0.13 m2 is then

Q̇ = (9.9)(0.13)(5) = 6.5 W

clearly this heat loss is negligible compared to the discrep-
ancy in the energy balance. Indeed, the exchanger is not
insulated because the heat transfer interaction with its sur-
roundings is negligible.

In designing the test rig a decision was made to sim-
ply place thermocouples in the center of the flow streams.
For turbulent flow the centerline temperature was ex-
pected to be a good approximation to the bulk tempera-
ture. In checking out the experiment, the initial results

were deemed good enough and thermocouple location as
a possible source of bias error was not further explored. In
the current study the impact of thermocouple location was
explored by varying the precise location of the thermocou-
ples. Small changes in the results were seen, but too small
to have any significant consequence on the energy balance
discrepancy. Turning our attention to the thermocouples
themselves, calibration in a constant temperature bath in-
dicated bias errors of the order of 0.1 °C. Recall that the
precision error analysis of Example 14 had a precision er-
ror of ±0.1 °C for the temperatures. For a quick estimate
of the impact of a bias error of 0.1 °C, we note that a worst
case for Test 10 would give ∆TC = 6.8 K instead of 7 K to
give an error in Q̇C = 2.9%. However, this bias error would
be essentially the same for all the tests and hence cannot
explain the variation of ∆Q̇ with flow rate.

Added insight is obtained if we view UA as the param-
eter of concern. Then UA can be calculated from either
Ntu, or the log mean temperature difference ∆T�m. In the
former case TC,out is not used, whereas in the latter case
it is. A comparison is shown in Table 10, where it is seen
that the discrepancy in UA calculated by the two different
methods varies from 0.6 to 3.8%, increasing as the flow rate
decreases. This results suggests that portion of the bias er-
rors must be attributed to the temperature measurements.

We conclude that both the flow and temperature mea-
surements could be sources of the bias errors noted in the
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results. To further explore these issues it would be nec-
essary to calibrate the flowmeter to at least 0.5% accuracy,
and to explore variations in the thermocouple installations.
Our chief concern should be the energy balance. The dis-
crepancies between experimental and expected ε and Ntu
values are probably no larger than the accuracy of the heat
transfer correlations used to calculate the expected val-
ues.

Case Study No. 5 The Evaporation Coefficient of
Water

It is usually possible to assume thermodynamic equilib-
rium at a liquid–vapor interface during phase change.
Then the liquid surface temperature can be related to the
pressure of the adjacent vapor as Ts = Tsat(Pv), and ob-
tained from thermodynamic vapor pressure tables. How-
ever, the assumption of thermodynamic equilibrium is in-
valid at low pressures and high rates of phase change. A
simple kinetic theory model (see, for example [1] pp. 719–
722) gives a result that relates Pv and TS to the rate of
phase change ṁ′′,

ṁ′′ = 2σ
2− σ

(
Pv

(2πRTv)1/2
− Ps
(2πRTs)1/2

)
[kg/m2s]

where Ps is Psat(Ts), and σ is the evaporation or conden-
sation coefficient (assumed equal). This coefficient is de-
fined as the fraction of vapor molecules incident on the
liquid surface that actually condense: a fraction (1 − σ)
are specularly reflected.

Experiments conducted with water in the 1920’s and
1930’s obtained very low values ofσ , in the range of 0.004–
0.04. Such low values would have a serious impact on
the design of steam condensers operating with low coolant
temperatures, for example, when sea water at extreme lat-
itudes is used as coolant. In succeeding years there have
been numerous experimental and theoretical studies of the
condensation coefficient for water (about 50 experimental
studies have been reported with results ranging from 0.001
to 1.0). A close examination of these experiments is an ob-
ject lesson on the role played by bias errors in falsifying
experimental data. Indeed, it is a lesson on how the sci-
entific literature avoids proper discussion of possible bias
errors even when there is evidence that bias errors are a
critical issue. In this case study we will examine a few of
the most important experiments, from the point of view of
bias error. When determining σ the key measurement is
Ts , the liquid surface temperature, which is used to obtain
Ps = Psat(Ts) from steam tables. The pressure of the vapor
Pv can be accurately measured quite easily, and the vapor
temperature Tv can be approximated by Ts with negligible
error [2]. The phase change rate ṁ′′ can also be measured
quite accurately in most situations. The various experi-
ments to be discussed differ in how Ts was measured.

Hickman [3]

Water was evaporated from a high speed 3.5 mm diameter,
17 mm long jet: the speeds used gave residence times for

the water varying from 0.001 to 0.023 s. In a typical run
the water entered at 7.5 °C and left at a bulk temperature
of 7.2 °C, the test chamber being maintained at 1 mm Hg
pressure. In processing the data, Ps and Ts were evaluated
at the average bulk temperature along the jet. It was real-
ized that the surface temperature had to be lower than the
bulk temperature in order for the enthalpy of vaporization
to be transferred to the jet surface. Figure 42 shows the
expected temperature profile. Empirical corrections were
duly made and estimates of σ between 0.23 and 0.35 re-
ported.

Nozzle Collector

T0 R

r u

T0Ts

x

Figure 42 Thermal boundary layer growth in a laminar jet.

However, a proper heat transfer analysis allows the sur-
face temperature to be calculated quite reliably. To model
heat transfer in the jet the following assumptions are rea-
sonable:

• Laminar flow.

• The water velocity u is constant across the jet (plug
flow).

• The jet cross-sectional area is constant.

• Liquid properties are constant.

• Heat conduction in the axial direction is negligible.

The energy conservation equation for the jet is then

u
∂T
∂r

= α
(
∂2T
∂r 2

+ 1
r
∂T
∂r

)

with initial condition T = T0, and boundary condition

k
∂T
∂r

∣∣∣∣
r=R

= hi (Ts − TC)

where hi is the interfacial heat transfer coefficient,

hi = 2σ
2− σ

(
2

πRTs

)1/2 ρvh2
fg

Ts
[W/m2 K]

and is derived in Section 7.6 of Reference [1]. It is straight-
forward to solve this heat conduction problem numerically
using finite difference methods. However, the first solution
was an approximate one, for which a thin thermal bound-
ary layer was assumed to reduce the problem to an analog
of heat conduction in a semi-infinite slab; also hi was as-
sumed constant at an average value along the jet [2, 4].
The results showed that the surface temperature falls to
much lower values than estimated by Hickman, and that
σ = 1 gave a good fit to the experimental data. A value
of σ = 0.35 yields evaporation rates that are only 50% of
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those measured, and a value of 0.035 would be impossi-
ble. Subsequently, Maa working in Hickman’s laboratory
[5], and Davies, et al. [6], performed similar experiments,
used a heat transfer analysis to obtain the surface temper-
ature, and obtained values of σ = 0.8 and 1.0, respectively.
Thus we can conclude that the original results of Hickman
were falsified by a large bias error due to an overestimate
of the jet surface temperature Ts : with Ts too high, σ was
always too low.

Alty [7]

In this very early study, water was evaporated from a drop
forming on the end of a copper pipette, the drop falling
into a beaker to sink below a layer of oil to prevent fur-
ther evaporation. The drop size at detachment was used
to infer the surface tension of the water at the pipette,
and hence the surface temperature of the water adjacent
to the pipette. The droplet surface was assumed to be
uniform at this temperature during the evaporation pro-
cess. The evaporation rate ṁ′′ was inferred from the wa-
ter supplied to the pipette and the final droplet mass. The
vapor phase pressure Pv and temperature Tv were accu-
rately measured, and Ps(Ts) obtained from steam tables.
Again the success or failure of the experiment depended
on whether the possible bias error in Ts was acceptably
small. Yet, nowhere in the paper was this issue ever men-
tioned!

Pippette

T

Ts

Figure 43 Possible temperature profiles in an evaporating
droplet.

The experiment is deceptively simple in appearance:
in reality the heat transfer problem is very complex. Cop-
per has a thermal conductivity three orders of magnitude
greater than that of water, thus, the temperature deduced
from surface tension is the temperature of the copper
pipette along the attachment line. Since typically 0.37 of
the total drop weight was evaporated, most of the enthalpy
of vaporization was supplied by conduction along the cop-
per pipette and in the droplet. Hence there were large tem-
perature gradients in the drop root and across the droplet.
Figure 43 shows possible isotherms. The droplet surface

cannot be isothermal. In contrast to the configuration of
Hickman, a heat transfer analysis is now very difficult. It is
a time dependent problem, and there is possibly a surface
tension driven flow due to the surface temperature gradi-
ent. A simple calculation assuming steady conduction and
a uniform surface temperature (as assumed by Alty) shows
that temperature gradients of the order of 500 K/mm are
required. Since these gradients are impossible, the real
heat transfer problem is quite different. Now, 70 years
later, it should be possible to use numerical methods to
solve a good model of the heat transfer process and ob-
tain the true surface temperature of the droplet: but such
an effort is not worthwhile. The experimental technique is
essentially impractical and should be discarded. Since the
actual droplet temperature must be lower than the pipette
temperature, there is a bias error in the value of Ts used,
leading to low values of σ . Alty obtained very low values
for σ , typically 0.036. In light of the large temperature
gradients that must have been present in the drop, such a
result is not surprising.

Delaney, et al. [8]

A shallow pool of water was located on top of a copper
block as shown in Figure 44. The rate of evaporation was
determined by measuring the rate of pressure rise in a
known volume of chamber above the pool, and the sur-
face temperature of the liquid was measured using a ther-
mistor probe. The validity of the experimental result of
σ = 0.042 at TS ≈ 0 °C is dependent on whether the ther-
mistor could measure the true effective surface tempera-
ture. At the start of a test run the top edge of the ther-
mistor was at the level of water surface. During the time
data was recorded the level dropped about 0.1 mm, which
can be compared with a height of the thermistor bead of
0.25 mm. Initially the thermistor can only measure the
temperature at a depth below the surface equal to one half
its immersion, namely 0.125 mm. Furthermore, as the up-
per edge of the thermistor breaks the surface it cannot
measure a temperature much closer to the surface since
the larger underside of the bead will tend to determine the
average temperature of the bead. Also, due to the presence
of the bead locally preventing evaporation, the tempera-
ture underneath the bead must be higher than that water
at the same depth below an evaporating surface.

Copper

2 mm

0.25 mm

Thermistor
    Leads

Figure 44 Evaporation from a pool in a copper block [9].
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For purposes of estimating a possible bias error it will
be assumed that, at best, the bead measures a temperature
0.125 mm below the water surface. To process the data
Delaney assumed a uniform surface temperature, which is
consistent with one dimensional heat transfer across the
pool (by conduction since the Rayleigh number proves to
be too small for natural convection to occur). Thus the
temperature gradient across the pool is estimated at

dT
dz

= −ṁ
′′hfg
k�

K/m

and the thermistor temperature is corrected as

Ts = Tth +
(
1.25× 10−3

) dT
dz

to give an estimate of the true water surface temperature.
When this was done in reference [4] the corrected values of
(Ps − Pv) varied from −0.20 to 0.27 mm Hg—whereas De-
laney’s uncorrected values varied from 1.66 to 0.66 mm Hg.
Since the corrected values straddle zero, and negative val-
ues are impossible for evaporation, the only conclusion is
that σ is large and cannot be determined using this tech-
nique. A subsequent investigation in the same laboratory
[9] obtained values ranging from 0.065 to 0.665, which sup-
ports the above assessment.

Nabavian and Bromley [10], Mills and Seban [2]

The interfacial heat transfer coefficient is associated with
an interfacial heat transfer resistance Ri = 1/hiAS . From
an engineering viewpoint, the issue is whether this inter-
facial resistance is significant and should be included in
the thermal circuit representing the complete heat trans-
fer process. In a steam condenser the circuit includes ther-
mal resistances of the condensate film, tube wall, coolant
and noncondensable gas, if present (see, for example, Ex-
ample 2.9 of reference [11]). We denote the sum of the
resistances as

∑
R; then if Ri is small relative to

∑
R it can

be ignored. The magnitude of hi is small at low pressures
due to the low vapor density ρV , and small if σ is small;
correspondingly Ri is then large. If calculations are made
for condensers operating with coolant water at about 5 °C,
σ = 0.02 − 0.04 results in values of Ri large enough to
have a significant effect on the design. On the other hand,
values of σ greater than 0.2 or 0.3 gives values of Ri small
enough to be neglected. Thus, although physical chemists
might be very interested with the precise values of σ , en-
gineers are only concerned if it is higher than 0.2–0.3. If it
is, its precise value is not relevant. It was with this view-
point that Nabavian and Bromley [10], and Mills and Seban
[2], designed experiments that would show unambiguously
whether σ was higher than 0.2–0.3. If σ was indeed small
then the experiments could yield precise values of σ . If σ
was higher than 0.2–0.3, no precise value could be inferred,
but then the precise value was irrelevant to the engineering
problem.

Associated with the thermal resistances are tempera-
ture drops. Figure 45 shows the circuit and temperature

profile for the experiment in reference [2]. Low pressure
steam was condensed on the front of a 12.7 cm high cop-
per block with coolant passed along the back of the block.
An array of thermocouples in the block allowed the surface
temperature of the block to be estimated and the heat flow
to be calculated. The heat flow was checked by a coolant
energy balance and by collecting the condensate. The ther-
mal resistance of the film was calculated using the well
known result of Nusselt for film condensation on a verti-
cal surface, given by Eq. (7.16) of BHMT. For a typical test
relevant data includes:

Q̇/A = 33.9× 104W/m2

Tsat = 10.1◦C
Tw = 5.7◦C

Nusselt film condensation theory given∆Tfilm = 4.2 K, thus

∆Ti = (Tsat − Tw)−∆Tfilm = 4.4− 4.2 = 0.2 K.

However, the interfacial temperature drop (Tsat − Ts) for
σ = 0.036 is predicted to be 4.2 K. Clearly σ cannot be as
low as 0.036.

Coolant Vapor at
Tsat (P)

Tb

Tc

Tw

Ts

TbTc Tw Ts Tsat

1

hcA
L
kA

1

hfilmA
1

hiA

Figure 45 Temperature profile and thermal circuit for the
experiment of Mills and Seban [2]

For the 10 tests reported, ∆Ti was measured to vary
from −0.6 K to +0.2 K, with a mean value of −0.27 K and
a precision uncertainty of the mean PX = 0.26 K at the
95% confidence level. Of course, ∆Ti cannot be less than
zero on physical grounds, but the indicated bias error is
small and within the bias errors that may be expected
for the key measurements. The results show that the in-
terfacial resistance is indeed negligible, but as a conse-
quence does not yield a precise value of σ . A value of
σ > 0.45 was concluded; similarly, Nabavian and Bromley
concluded σ > 0.35.
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Concluding Comments

Case Study 5 illustrates the importance of attempting to
quantitatively estimate bias errors. In Hickman’s experi-
ment the bias error could be accurately estimated and the
technique proves adequate for determining σ when σ is
large. On the other hand, in the experiments of Alty and
of Delaney (and many others), it can be clearly shown that
bias errors in determining the surface temperature are suf-
ficient to give large errors in the measured values of σ .
However, the complexity of the heat transfer processes do
not allow these bias errors to be satisfactorily estimated,
and thus these experiments must be disregarded. The ex-
periments of Nabavian and Bromley, and Mills and Seban
were initiated at a time when it was generally accepted that
σ was very low for water: Alty’s value of 0.036 was usu-
ally quoted. These experiments were designed to show
unambiguously whether σ could be that low in the actual
situation of engineering concern, namely, a low pressure
condenser. The results showed that σ could not be lower
than about 0.35–0.45, and hence the precise value was of
no engineering importance.

In examining the many studies that yielded low values
of σ , it is seen that little or no attention was was given
to evaluating bias errors. In designing their experiments,
the investigators should have asked the question, “How
accurately must the surface temperature be measured in
order to have a successful experiment?” Then some quan-
titative estimates of possible bias errors in their measure-
ment technique should have been made. But what is really
disturbing is how this situation has been dealt with in the
many review articles that have been published up to the
present time. There are obvious anomalies in data for σ ,
yet little or no attempt is made to subject the data to error
analysis, and then reject data that cannot be defended. The
results of Alty are still displayed prominently. The original
results of Hickman at σ = 0.23− 0.35 are still given equal
weight to the corrected values indicating σ = 0.8 − 1.0,
even when some of the corrected values are in reports from
Hickman’s own laboratory!

This case study certainly illustrates the statement
made in §2, namely, “Precision errors can be a nuisance,
a gross bias error can be a catastrophe!”
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Case Study No. 6. Average Heat Transfer for a
Cylinder in Cross-Flow

Case Study No. 5 dealt with bias errors that resulted from
faulty measurements of the surface temperature of evap-
orating water. In this case study we deal with bias errors
that result from an incomplete understanding of the phys-
ical phenomena being investigated. In Case Study No. 1 we
looked at measurements of stagnation line heat transfer
on a cylinder in cross-flow of air. We now look at average
heat transfer for the cylinder, as well as local heat trans-
fer distributions around the cylinder. In particular we will
examine the role played by “nuisance” variables, that is,
variables that may not be identified or controlled, and yet
have significant effects.

All standard heat transfer textbooks present correla-
tions for the average heat transfer coefficient for a single
cylinder in cross-flow. For example, BHMT gives the corre-
lations recommended by Churchill and Bernstein [1] in the
form

NuD = f(ReD,Pr). (45)

BHMT Section 4.2.3 also describes how an experiment to
obtain NuD might be performed in a wind tunnel. It is used
to specify the range of Reynolds number over which the
correlation is valid (although an accuracy is almost never
specified). The Reynolds number is an obvious variable
that affects the flow field, and hence the Nusselt number.
But are there other variables that affect the flow? All the
experimental data has been obtained in wind tunnels and
in first instance, three variables can be identified:

1. The level of turbulence in the oncoming flow.

2. The aspect ratio of the cylinder, i.e., width of tunnel
divided by cylinder diameter, AR = L/D assuming
the cylinder spans the tunnel.

3. The blockage ratio, i.e., the cylinder diameter divided
by tunnel height, B = D/H.
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Average heat transfer tends to increase with increases
in these three parameters. In the limit of zero turbulence,
infinite AR and zero B we have the situation of a very long
cylinder moving through the undisturbed atmosphere, and
it is this situation that is imagined by most readers of these
texts. But the data has been obtained in real wind tunnels
so we must ask whether these limiting conditions effec-
tively existed in the experiments. Another variable is the
surface condition of the cylinder—is it smooth or rough?
Again it is usually imagined that the surface is smooth
though no quantitative assessment is given. Then there
are variables related to thermal issues:

1. The effect of variable fluid properties.

2. The effect of the wall thermal boundary condition.

The larger the temperature difference between the wall
and free-stream, the more important are the effects of fluid
property variations across the flow, particularly viscosity
variation. However, this issue is common to all convective
situations and is usually adequately handled in these texts.
Either properties are evaluated at the mean film tempera-
ture, or property ratio correction factors are specified (see
BHMT §4.2.4). It is usual to have either an approximately
uniform wall temperature or uniform heat flux around the
circumference of the cylinder. The local heat transfer coef-
ficient variation around the cylinder depends on this wall
boundary condition. Furthermore, it is not meaningful to
calculate an average heat transfer coefficient in the usual
manner for a uniform wall heat flux (see BHMT Eq. (4.82)).

Figure 46 Centerline local Nusselt number around a cylinder in
crossflow. ReD = 33,740, aspect ratios AR from 6 to 12 [1].

These secondary or “nuisance” variables greatly com-
plicate what appeared to be a rather simple convective heat
transfer situation. They were not discussed in Case Study
No. 1 because, except in more extreme situations, they
have no effect on stagnation line heat transfer: it is the
local distribution around the cylinder and the resulting av-
erage value that is affected. In the case of aspect ratio,
the characteristic feature is a significant increase in local

heat transfer coefficients on the rear of the cylinder, and 
a resulting increase in the average heat transfer. Figure 
46 shows distributions of the local Nusselt number, nor-
malized by the stagnation line value, at the centerplane for 
aspect ratio varying from 12 to 6. (For AR < 12 the aspect 
ratio effect is essentially negligible.) A number of experi-
mental studies have been reported in the literature giving 
data taken at small aspect ratios, without the investigators 
being aware of the effect of aspect ratio. It is this type of 
bias error that can greatly reduce the value of an experi-
mental study. Researchers are not infallible—we all make 
errors due to a less than complete understanding of our 
work. The important lesson is to critically examine all as-
pects of a problem so as to minimize the risk of having an 
unknown bias error.

J.   

Case Study No. 7 Single-Phase Flow in Microchan-
nels.

Microchannel heat sinks have received much attention ow-
ing to their promise for effective heat removal from space
constrained electronic devices. Channels of hydraulic
diameters in the range of 50–1000µm are considered.
Smaller sizes have higher heat transfer coefficients but the
associated large pressure drops cannot satisfy pumping
constraints. BHMT [1], Exercises 8-88 to 8-91 illustrate
design considerations for microchannel heat sinks. The
designer requires appropriate correlations for friction fac-
tor and Nusselt number, and physical considerations sug-
gest that the usual continuum correlations should apply:
see, for example, the correlations given in Section 4.3.1 of
BHMT [1]. Research to confirm the validity of these cor-
relations for microchannel flow commenced in the 1980’s
and numerous studies were reported in the 1990’s and to
the present time. A review of this work provides a striking
example of how bias errors can cause utter confusion and
considerable waste of time and money.

Early experimental studies, e.g. Wu and Little [2] and
Choi, et al. [3] showed large deviations from the conven-
tional theory and correlations for both laminar and turbu-
lent flow. Such results led to a commonly held view that
there were physical phenomena peculiar to microchannel
momentum and heat transfer. In their 1999 review article,
Ho and Tai [4] state “…the unique features in microme-
chanics are perhaps the most intriguing ones for the re-
searchers in basic fluid mechanics.” In 2004 Nakayama
[5] introduced a special issue of Heat Transfer Engineering
devoted to microscale technologies for electronics cooling
and wrote “…but there remains controversy as to possible
involvement of some novel physical processes in micro-
scale dimensions.”
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Figure 47 Comparison of experimental and theoretical friction
factors for laminar flow in microtubes and microchannels [6].

Figure 48 Comparison of experimental and theoretical Nusselt
numbers for laminar flow in microchannels and microtubes [6].

These anomalous experimental results encouraged
other workers to perform more experimental studies, and
to do analytical and numerically modeling that might shed
light on the observed behavior. However, the new experi-
mental results did not agree with earlier results: each new
study gave different results! Figures 47 and 48 show a com-
parison of experimental results for friction factor and Nus-
selt number for laminar flow presented by Garimella and
Singhal [6]. There is no agreement with respect to absolute
values, or trends with Reynolds number: the experimental
friction tends to be much higher than theory, whereas the
heat transfer is lower. If one looks at data from any par-
ticular study, it will be seen that the scatter (random error)
is much smaller than the discrepancies shown in Figs. 47
and 48. Figure 49 shows a sample. Thus we must conclude
that the experimental data is falsified by a variety of bias

errors. Random error is simply not an issue and need not
be discussed further.

Figure 49 Comparison of experimental and theoretical friction
factors for laminar flow in a microchannel with a hydraulic
diameter of 0.133 mm [12].

How should one proceed to resolve such anomalous
behavior? One should not just try another experimental
study. What is needed is a critical examination of the re-
ported studies in an attempt to identify possible sources
of bias error. The most fortunate of situations is when a
bias error is identified and the original experimental data
can be reprocessed or reinterpreted to give the suspected
true result. Herwig and Hausner [7] did just this for exper-
imental heat transfer data reported for laminar flow in mi-
crotubes by Tso and Mahulikar [8]. They showed that axial
conduction in the fluid and the block containing the micro-
tubes could not be ignored. Using a standard CFD code to
solve the conjugate heat transfer problem they found that
the experiment indeed gave Nusselt numbers close to the
theoretical value of 4.36 over the central part of the tubes:
deviations at each end resulted from axial conduction ef-
fects. Often experimental studies are poorly reported and
identification of possible bias errors is difficult: such stud-
ies should be discarded as unverifiable. Sometimes the
manner in which the experimental work was carried out
suggests that the results should be viewed with some skep-
ticism. For example, in the series of papers by Peng, et al.
[9, 10, 11, 12] key definitions change from paper to paper
without any explanation for these changes. Also how some
key measurements were made is not explained. Again such
studies should be discarded. In contrast, there have been
some carefully designed and performed experiments that
show good agreement with accepted theory and correla-
tions. Figure 50 shows a sample of friction factors taken
for laminar flow reported by Garimella and Singh [6].
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Figure 50 Friction factor versus Reynolds number. Hydraulic
diameters of 974µm and 324µm.

In the foregoing experimental work the objective was
to obtain friction factors and Nusselt number data for flow
in microchannels: the experimental apparatus was usually
designed to facilitate this objective. The idea was that such
data could be used to design optimal heat sinks, as shown
in Exercise 89 of BHMT [1]. Given the difficulties encoun-
tered one could argue that it would have been cost effective
to test a range of prototypes of expected near optimal con-
figuration (in particular, channel widths). Such tests would
be relatively simple. The only key measurements are power
dissipated by the electronic device on the heat sink, its tem-
perature, the coolant flow rate and coolant inlet tempera-
ture. In this manner bias errors introduced through the
configuration of the experimental apparatus, for example
in the Tso and Mahulikar experiment [8] are avoided.
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