Development results of a PDE one dimensional model to
simulate thermal transfer from a heat source through to
polyethylene and water.

Model Highlights:

* A 48 by 12841 Matrix of PDE (partial differential equations) operators calculating a time
series of one to three thermal cycles spanning 75 to 210 seconds and measuring across a
one-dimensional span of 2.4 mm at .05 mm resolution.

* The model simulates thermal block heat transfer to the vial and fluid.

Model Development Goals:

1. Develop a modeling tool that accurately simulates the thermal behavior of the “heated
elements” of the Radium Thermal Cycler device. This is the polyethylene vial and the fluid
contained in the vial.

2. Profile temperature within the polyethylene and vial fluid (at one-dimensional .05mm
cross sections).

3. With the above measurement simulation capability, the model can be used to probe
temperature regions that a thermistor can not reach.



Original Project Notes




Vial Dimensions/Model Region of Interest.
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Live Thermal Data Captured from a Thermal Block and Vial
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Comparing Simulated Thermal Data to Live Data
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Verification of the PDE Model

 The model utilizes live data captured at the thermal block as an input.

 The verification test is to measure differences between the model data
output and live captured data.

Test Methodology:

1. Use a center point in the data field of the model for the data to be
tested.

2. Import the GoTaql.5 data captured in a vial.
3. Integrate the area under the curve for both live data and simulated.
4. Measure the variance of the simulated data to the measured data.



15t Cycle Data Plot of PDE Curve vs. The GoTaql.5 Curve
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15t Cycle Integration Analysis. (The PDE curve has an overall error of 2%)

RED Line = Integration
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2nd Cycle Integration Analysis. (The PDE curve has an overall error of 2%)
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3rd Cycle Integration Analysis. (The PDE curve has an overall error of 1.5%)
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Summary of PDE Model Performance.

. Based upon the current model, using the GoTaq 1.5 as a control input, it
takes one thermal cycle for the PDE model to converge.

The accuracy of the model is better on the second cycle of the thermal
control event.(This is due to model convergence.)

. The second cycle PDE pulse “rise time” tracks the GoTagl.5 data very well.
. The “fall time” of the PDE pulse is not as fast as the GoTagl.5 data.

. Based upon the “area under the curve “ technique to measure the accuracy
of the model, the first cycle is accurate to 2% and the second cycle accuracy

is within 1.5% .



Simulated data at a 0.05mm boundary within the Vial Polyethylene
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Simulated data at a 0.20mm boundary within the Vial Polyethylene
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Simulated data at a 0.25mm boundary at the Vial and Water interface
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Synthetic Waveform/ Graph Notes and Goals.




Comparing Thermal Input Waveforms/Shapes(One step function and 3 Pulses)

125.00

120.00

115.00

110.00

105.00

100.00

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

50.00

sec

time in

====97C (input/no over shoot)

97C(output/no over shoot)
— = 105C ( input/long pulse)

105C ( output/long pulse)
- =110C ( input/medium pulse)

110C{output/medium pulse)

—_— = 120C (input/narrow pulse)

120C ( ouput/narrow pulse)

8 per. Mov. Avg. (120C ( ouput/narrow pulse))

24.08 28.277 42.629 47.171 51.935 56.86




Step function Response at 97C
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(40 seconds wide)Long Pulse at 97C
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(20seconds wide) Medium Pulse at 100C
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(10 seconds wide) Narrow Pulse at 120C
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Summary of Model Observations.

. Model convergence appears to be an issue with the 1D PDE approach.

Improvements to coefficients and boundary areas ,such as the air to
Polyethylene and Polyethylene to water will improve model accuracy.

. Further improvements can be achieved by adding a means to simulate the
mounting of the thermistor in the vial with epoxy. (This would improve the
fall time of the PDE curve at the center of the vial).

. Based upon the “area under the curve “ technique to measure the accuracy
of the model, the first cycle is accurate to 2% and the second cycle accuracy

is within 1.5%.

. There appears to be no thermal under shoot in the PDE model at probe
positions close to the polyethylene. (This could be due to the accuracy of
the falling edge of the PDE pulse.)

. There are model thermal undershoots with in the polyethylene.

. The model demonstrates response to thermal pulse input events consistent
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